首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reaction of propane‐1,3‐diamine hydrochloride, 18‐crown‐6 and zinc(II) chloride in methanol solution yields the title complex salt [systematic name: propane‐1,3‐diaminium tetrachloridozincate(II)–1,4,7,10,13,16‐hexaoxacyclooctadecane (1/1)], (C3H12N2)[ZnCl4]·C12H24O6, with an unusual supramolecular structure. The diprotonated propane‐1,3‐diaminium cation forms an unexpected 1:1 supramolecular rotator–stator complex with the crown ether, viz. [C3H12N2(18‐crown‐6)]2+, in which one of the –NH3+ substituents nests in the crown and interacts through N—H...O hydrogen bonding. The other –NH3+ group interacts with the [ZnCl4]2− anion via N—H...Cl hydrogen bonding, forming cation–crown–anion ribbons parallel to [010].  相似文献   

2.
The absolute configurations of three new enanti­omerically pure ferrocenylphosphole compounds, namely (2S,4S,SFc)‐4‐methoxy­methyl‐2‐[2‐(9‐thioxo‐9λ5‐phosphafluoren‐9‐yl)­ferro­cenyl]‐1,3‐dioxane, [Fe(C5H5)(C23H22O3PS)], (III), (SFc)‐[2‐(9‐thioxo‐9λ5‐phosphafluoren‐9‐yl)ferrocenyl]methanol, [Fe(C5H5)(C18H14OPS)], (V), and (SFc)‐diphenyl[2‐(9‐thioxo‐9λ5‐phosphafluoren‐9‐yl]ferrocenylmethyl]phosphine, [Fe(C5H5)(C30H23P2)], (VIII), have been unambiguously established. All three ligands contain a planar chiral ferrocene group, bearing a dibenzo­phos­phole and either a dioxane, a methanol or a diphenyl­phosphino­methane group on the same cyclopentadienyl. In compound (V), the occurrence of O—H⋯S and C—H⋯S hydrogen bonds results in the formation of a two‐dimensional network parallel to (001). The geometry of the ferrocene frameworks agrees with related reported structures.  相似文献   

3.
In catena‐poly[[aqua[1,3‐bis(pyridine‐3‐ylmethoxy)benzene‐κN]zinc(II)]‐μ2‐benzene‐1,4‐dicarboxylato‐κ2O1:O4], [Zn(C8H4O4)(C18H16N2O2)(H2O)]n, each ZnII centre is tetrahedrally coordinated by two O atoms of bridging carboxylate groups from two benzene‐1,4‐dicarboxylate anions (denoted L2−), one O atom from a water molecule and one N atom from a 1,3‐bis[(pyridin‐3‐yl)methoxy]benzene ligand (denoted bpmb). (Aqua)O—H...N hydrogen‐bonding interactions induce the formation of one‐dimensional helical [Zn(L)(bpmb)(H2O)]n chains which are interlinked through (aqua)O—H...O hydrogen‐bonding interactions, producing two‐dimensional corrugated sheets.  相似文献   

4.
In poly[aqua(μ3‐benzene‐1,4‐dicarboxylato‐κ5O1,O1′:O1:O4,O4′)[2‐(pyridin‐3‐yl‐κN)‐1H‐benzimidazole]cadmium(II)], [Cd(C8H4O4)(C12H9N3)(H2O)]n, (I), each CdII ion is seven‐coordinated by the pyridine N atom from a 2‐(pyridin‐3‐yl)benzimidazole (3‐PyBIm) ligand, five O atoms from three benzene‐1,4‐dicarboxylate (1,4‐bdc) ligands and one O atom from a coordinated water molecule. The complex forms an extended two‐dimensional carboxylate layer structure, which is further extended into a three‐dimensional network by hydrogen‐bonding interactions. In catena‐poly[[diaquabis[2‐(pyridin‐3‐yl‐κN)‐1H‐benzimidazole]cobalt(II)]‐μ2‐benzene‐1,4‐dicarboxylato‐κ2O1:O4], [Co(C8H4O4)(C12H9N3)2(H2O)2]n, (II), each CoII ion is six‐coordinated by two pyridine N atoms from two 3‐PyBIm ligands, two O atoms from two 1,4‐bdc ligands and two O atoms from two coordinated water molecules. The complex forms a one‐dimensional chain‐like coordination polymer and is further assembled by hydrogen‐bonding interactions to form a three‐dimensional network.  相似文献   

5.
A new synthetic route to 2,2‐bis(sulfanylmethyl)propane‐1,3‐diol, (II), is described starting from the commercially available 2,2‐bis(hydroxymethyl)propane‐1,3‐diol. The structures of two intermediates on this route are described. 5,5‐Dimethenyl‐2,2‐dimethyl‐1,3‐dioxane bis(thiocyanate) (systematic name: {[5‐(cyanosulfanyl)‐2,2‐dimethyl‐1,3‐dioxan‐5‐yl]sulfanyl}formonitrile), C10H14N2O2S2, (X), crystallizes in the space group P21/c with no symmetry relationship between the two thiocyanate groups. There is a short intramolecular N...S contact for one thiocyanate group, while the second group is positioned such that this type of interaction is not possible. 1,3‐(Hydroxymethyl)propane‐1,3‐diyl bis(thiocyanate), C7H10N2O2S2, (XI), also features a single short N...S contact in the solid state. Hydrogen bonding between two molecules of compound (XI) results in the formation of dimers in the crystal, which are then linked together by a second hydrogen‐bond interaction between the dimers. In addition, the structures of two intermediates from an unsuccessful alternative synthesis of (II) are reported. 2,2‐Bis(chloromethyl)propane‐1,3‐diol, C5H10Cl2O2, (VI), crystallized as an inversion twin with a minor twin fraction of 0.43 (6). It forms a zigzag structure as a result of intermolecular hydrogen bonding. The structure of 9,9‐dimethyl‐2,4,8,10‐tetraoxa‐3λ4‐thiaspiro[5.5]undecan‐3‐one, C8H14O5S, (VII), shows evidence for a weak S...O contact with a distance of 3.2529 (11) Å.  相似文献   

6.
7‐Benzyl‐3‐tert‐butyl‐1‐phenyl‐6,7‐dihydro‐1H,4H‐pyrazolo[3,4‐d][1,3]oxazine, C22H25N3O, (I), and 3‐tert‐butyl‐7‐(4‐methylbenzyl)‐1‐phenyl‐6,7‐dihydro‐1H,4H‐pyrazolo[3,4‐d][1,3]oxazine, C23H27N3O, (II), are isomorphous in the space group P21, and molecules are linked into chains by C—H...O hydrogen bonds. In each of 3‐tert‐butyl‐7‐(4‐methoxybenzyl)‐1‐phenyl‐6,7‐dihydro‐1H,4H‐pyrazolo[3,4‐d][1,3]oxazine, C23H27N3O2, (III), which has cell dimensions rather similar to those of (I) and (II), also in P21, and 3‐tert‐butyl‐1‐phenyl‐7‐[4‐(trifluoromethyl)benzyl]‐6,7‐dihydro‐1H,4H‐pyrazolo[3,4‐d][1,3]oxazine, C23H24F3N3O, (IV), there are no direction‐specific interactions between the molecules. In 3‐tert‐butyl‐7‐(4‐nitrobenzyl)‐1‐phenyl‐6,7‐dihydro‐1H,4H‐pyrazolo[3,4‐d][1,3]oxazine, C22H24N4O3, (V), a combination of C—H...O and C—H...N hydrogen bonds links the molecules into complex sheets. There are no direction‐specific interactions between the molecules of 3‐tert‐butyl‐7‐(2,3‐dimethoxybenzyl)‐1‐phenyl‐6,7‐dihydro‐1H,4H‐pyrazolo[3,4‐d][1,3]oxazine, C24H29N3O3, (VI), but a three‐dimensional framework is formed in 3‐tert‐butyl‐7‐(3,4‐methylenedioxybenzyl)‐1‐phenyl‐6,7‐dihydro‐1H,4H‐pyrazolo[3,4‐d][1,3]oxazine, C23H25N3O3, (VII), by a combination of C—H...O, C—H...N and C—H...π(arene) hydrogen bonds, while a combination of C—H...O and C—H...π(arene) hydrogen bonds links the molecules of 3‐tert‐butyl‐1‐phenyl‐7‐(3,4,5‐trimethoxybenzyl)‐6,7‐dihydro‐1H,4H‐pyrazolo[3,4‐d][1,3]oxazine, C25H31N3O4, (VIII), into complex sheets. In each compound, the oxazine ring adopts a half‐chair conformation, while the orientations of the pendent phenyl and tert‐butyl substituents relative to the pyrazolo[3,4‐d]oxazine unit are all very similar.  相似文献   

7.
Five‐coordinate Cr(N)(salen) {salen is 2,2′‐[ethane‐1,2‐diylbis(nitrilomethylidyne)]diphenolate} reacts with [RhCl(COD)]2 (COD is 1,5‐cyclooctadiene) to yield the heterobimetallic nitride‐bridged title compound, namely chlorido‐2κCl‐[2(η4)‐1,5‐cyclooctadiene]{2,2′‐[ethane‐1,2‐diylbis(nitrilomethylidyne)]diphenolato‐1κ4O,N,N′,O′}‐μ‐nitrido‐1:2κ2N:N‐chromium(V)rhodium(I), [CrRh(C16H14N2O2)ClN(C8H12)]. The Cr—N bond of 1.5936 (14) Å is elongated by only 0.035 Å compared to the terminal Cr—N bond in the precursor. The nitride bridge is close to being linear [173.03 (9)°] and the Rh—N bond of 1.9594 (14) Å is very short for a monodentate nitrogen‐donor ligand, indicating significant π‐acceptor character of the Cr[triple‐bond]N group.  相似文献   

8.
Schiff bases are considered `versatile ligands' in coordination chemistry. The design of polynuclear complexes has become of interest due to their facile preparations and varied synthetic, structural and magnetic properties. The reaction of the `ligand complex' [CuL] {H2L is 2,2′‐[propane‐1,3‐diylbis(nitrilomethanylylidene)]diphenol} with Ni(OAc)2·4H2O (OAc is acetate) in the presence of dicyanamide (dca) leads to the formation of bis(dicyanamido‐1κN1)bis(dimethyl sulfoxide)‐2κO,3κO‐bis{μ‐2,2′‐[propane‐1,3‐diylbis(nitrilomethanylylidene)]diphenolato}‐1:2κ6O,O′:O,N,N′,O′;1:3κ6O,O′:O,N,N′,O′‐dicopper(II)nickel(II), [Cu2Ni(C17H16N2O2)2(C2N3)2(C2H6OS)2]. The complex shows strong absorption bands in the frequency region 2155–2269 cm−1, which clearly proves the presence of terminal bonding dca groups. A single‐crystal X‐ray study revealed that two [CuL] units coordinate to an NiII atom through the phenolate O atoms, with double phenolate bridges between CuII and NiII atoms. Two terminal dca groups complete the distorted octahedral geometry around the central NiII atom. According to differential thermal analysis–thermogravimetric analysis (DTA–TGA), the title complex is stable up to 423 K and thermal decomposition starts with the release of two coordinated dimethyl sulfoxide molecules. Free H2L exhibits photoluminescence properties originating from intraligand (π–π*) transitions and fluorescence quenching is observed on complexation of H2L with CuII.  相似文献   

9.
The structures of 2‐phenyl­malonpiperadide [systematic name: 2‐phenyl‐1,3‐bis­(piperidin‐1‐yl)­propane‐1,3‐dione, C19H26N2O2, (I)] and 2‐phenyl­malonmorpholide [systematic name: 1,3‐dimorpholino‐2‐phenyl­propane‐1,3‐dione, C17H22N2O4, (II)], have been determined and both their molecular conformations and packing arrangements compared. Although chemically similar, compounds (I) and (II) exhibit different molecular conformations. The only general conformational similarities are that their respective carbonyl groups are orientated in the same direction and the heterocyclic rings exist in the chair arrangement. General similarities in the packing arrangements arise due to both compounds having the same space group (P212121) and a similar alignment of their phenyl‐substituted backbone with respect to the c axis. Similar C—H⋯O hydrogen‐bonding associations are listed for the carbonyl O atoms, while only one of the morpholine O atoms is involved in any such association.  相似文献   

10.
The complex [Pd(O,N,C‐L)(OAc)], in which L is a monoanionic pincer ligand derived from 2,6‐diacetylpyridine, reacts with 2‐iodobenzoic acid at room temperature to afford the very stable pair of PdIV complexes (OC‐6‐54)‐ and (OC‐6‐26)‐[Pd(O,N,C‐L)(O,C‐C6H4CO2‐2)I] (1.5:1 molar ratio, at ?55 °C). These complexes and the PdII species [Pd(O,N,C‐L)(OX)] and [Pd(O,N,C‐L′)(NCMe)]ClO4, (X=MeC(O) or ClO3, L′=another monoanionic pincer ligand derived from 2,6‐diacetylpyridine), are precatalysts for the arylation of CH2?CHR (R?CO2Me, CO2Et, Ph) using IC6H4CO2H‐2 and AgClO4. These catalytic reactions have been studied and a tentative mechanism is proposed. The presence of two PdIV complexes was detected by ESI(+)‐MS during the catalytic process. All the data obtained strongly support a PdII/PdIV catalytic cycle.  相似文献   

11.
Erlotinib [systematic name: N‐(3‐ethynylphenyl)‐6,7‐bis(2‐methoxyethoxy)quinazolin‐4‐amine], a small‐molecule epidermal growth factor receptor inhibitor, useful for the treatment of non‐small‐cell lung cancer, has been crystallized as erlotinib monohydrate, C22H23N3O4·H2O, (I), the erlotinib hemioxalate salt [systematic name: 4‐amino‐N‐(3‐ethynylphenyl)‐6,7‐bis(2‐methoxyethoxy)quinazolin‐1‐ium hemioxalate], C22H24N3O4+·0.5C2O42−, (II), and the cocrystal erlotinib fumaric acid hemisolvate dihydrate, C22H23N3O4·0.5C4H4O4·2H2O, (III). In (II) and (III), the oxalate anion and the fumaric acid molecule are located across inversion centres. The water molecules in (I) and (III) play an active role in hydrogen‐bonding interactions which lead to the formation of tetrameric and hexameric hydrogen‐bonded networks, while in (II) the cations and anions form a tetrameric hydrogen‐bonded network in the crystal packing. The title multicomponent crystals of erlotinib have been elucidated to study the assembly of molecules through intermolecular interactions, such as hydrogen bonds and aromatic π–π stacking.  相似文献   

12.
The title compound, bis(μ‐1,2‐benzene­thiol­ato)‐1:2κ3S,S′:S′;2:1κ3S,S′:S′‐bis­[(2,2′‐bi­pyridine‐κ2N,N′)­zinc(II)], [Zn2(μ‐C6H4S2)2(C10H8N2)2], crystallizes with the dinuclear mol­ecule located on a center of symmetry. The coordination geometry about the Zn atom is a modestly distorted trigonal bipyramid, with the axial ligating atoms at an angle of 170.81 (4)° and the angles in the equatorial plane in the range 112.94 (4)–129.95 (4)°. Weak π‐stacking interactions between bi­pyridine ligands on adjacent mol­ecules [interplanar spacing = 3.315 (3) Å] and a possible weak intermolecular C—H⋯S hydrogen bond (H⋯S = 2.84 Å) are seen in the crystal.  相似文献   

13.
Reported here are the single‐crystal X‐ray structure analyses of bis‐μ‐methanol‐κ4O:O‐bis{[hydrotris(3‐phenyl‐2‐sulfanylidene‐2,3‐dihydro‐1H‐1,3‐imidazol‐1‐yl)borato‐κ3H,S,S′](methanol‐κO)sodium(I)}, [Na2(C27H22BN6S3)2(CH4O)4] (NaTmPh), bis‐μ‐methanol‐κ4O:O‐bis{[hydrotris(3‐isopropyl‐2‐sulfanylidene‐2,3‐dihydro‐1H‐1,3‐imidazol‐1‐yl)borato‐κ3H,S,S′](methanol‐κO)sodium(I)}–diethyl ether–methanol (1/0.3333/0.0833), [Na2(C18H28BN6S3)2(CH4O)4]·0.3333C4H10O·0.0833CH3OH (NaTmiPr), and a novel anhydrous form of sodium hydrotris(methylthioimidazolyl)borate, poly[[μ‐hydrotris(3‐methyl‐2‐sulfanylidene‐2,3‐dihydro‐1H‐1,3‐imidazol‐1‐yl)borato]sodium(I)], [Na(C12H16BN6S3)] ([NaTmMe]n). NaTmiPr and NaTmPh have similar dimeric molecular structures with κ3H,S,S′‐bonding, but they differ in that NaTmPh is crystallographically centrosymmetric (Z′ = 0.5) while NaTmiPr contains one crystallographically centrosymmetric dimer and one dimer positioned on a general position (Z′ = 1.5). [NaTmMe]n is a one‐dimensional coordination polymer that extends along the a direction and which contains a hitherto unseen side‐on η2‐C=S‐to‐Na bond type. An overview of the structural preferences of alkali metal soft scorpionate complexes is presented. This analysis suggests that these thione‐based ligands will continue to be a rich source of interesting alkali metal motifs worthy of isolation and characterization.  相似文献   

14.
A series of seven novel f-element bearing hybrid materials have been prepared from either methyl substituted 3,4 and 4,5-pyrazoledicarboxylic acids, or heterocyclic 1,3- diketonate ligands using hydrothermal conditions. Compounds 1, [UO2(C6H4N2O4)2(H2O)], and 3, [Th(C6H4N2O4)4(H2O)5]·H2O feature 1-Methyl-1H-pyrazole-3,4-dicarboxylate ligands (SVI-COOH 3,4), whereas 2, [UO2(C6H4N2O4)2(H2O)], and 4, [Th(C6H5N2O4)(OH)(H2O)6]2·2(C6H5N2O4)·3H2O feature 1-Methyl-1H-pyrazole-4,5-dicarboxylate moieties (SVI-COOH 4,5). Compounds 5, [UO2(C13H15N4O2)2(H2O)]·2H2O and 6, [UO2(C11H11N4O2)2(H2O)]·4.5H2O feature 1,3-bis(4-N1-methyl-pyrazolyl)propane-1,3-dione and 1,3-bis(4-N1,3-dimethyl-pyrazolyl)propane-1,3-dione respectively, whereas the heterometallic 7, [UO2(C11H11N4O2)2(CuCl2)(H2O)]·2H2O is formed by using 6 as a metalloligand starting material. Single crystal X-ray diffraction indicates that all coordination to either [UO2]2+ or Th(IV) metal centers is through O-donation as anticipated. Room temperature, solid-state luminescence studies indicate characteristic uranyl emissive behavior for 1 and 2, whereas those for 5 and 6 are weak and poorly resolved.  相似文献   

15.
Two differently hydrated crystal forms of the title compound, viz. bis­(acetato‐κ2O,O′)(2,9‐di­methyl‐1,10‐phenanthroline‐κ2N,N′)­mercury(II), [Hg(C2H3O2)2(C14H12N2)] or [HgAc2(dmph)] [dmph is 2,3‐di­methyl‐1,10‐phenantroline (neocuproine) and Ac is acetate], (I), and tris­[bis­(acetato‐κ2O,O′)(2,9‐di­methyl‐1,10‐phenanthroline‐κ2N,N′)­mercury(II)] hexadecahydrate, [Hg(C2H3O2)2(C14H12N2)]3·16H2O or [HgAc2(dmph)]3·16H2O, (II), are presented. Both structures are composed of very simple monomeric units, which act as the building blocks of complex packing schemes stabilized by a diversity of π–π and hydrogen‐bonding interactions.  相似文献   

16.
The tetramer of bis(4-di-n-butylaminophenyl)(pyridin-3-yl)borane [systematic name: 2λ4,4λ4,6λ4,8λ4-tetrabora-1,3,5,7(1,3)-tetrapyridinacyclooctaphane-11,31,51,71-tetrakis(ylium)], C132H192B4N12, was synthesized unexpectedly and crystallized. Its structure contains an unusual 16-membered ring core made up of four (pyridin-3-yl)borane groups. The ring adopts a conformation with pseudo-S4 symmetry that is very different from the two other reported examples of this ring system. Density functional theory (DFT) computations indicate that the stability of the three reported ring conformations is dependent on the substituents on the B atoms, and that the pseudo-S4 geometry observed in the bis(4-dibutylaminophenyl)(pyridin-3-yl)borane tetramer becomes significantly more stable when phenyl or 2,6-dimethylphenyl groups are attached to the boron centers.  相似文献   

17.
The reaction of [FeL(MeOH)2] {where L is the tetradentate N2O2‐coordinating Schiff base‐like ligand (E,E)‐diethyl 2,2′‐[1,2‐phenylenebis(nitrilomethylidyne)]bis(3‐oxobutanoate)(2−) and MeOH is methanol} with 3‐aminopyridine (3‐apy) in methanol results in the formation of the octahedral complex (3‐aminopyridine‐κN1){(E,E)‐diethyl 2,2′‐[1,2‐phenylenebis(nitrilomethylidyne)]bis(3‐oxobutanoato)(2−)‐κ4O3,N,N′,O3′}(methanol‐κO)iron(II), [Fe(C20H22N2O6)(C5H6N2)(CH4O)] or [FeL(3‐apy)(MeOH)], in which the FeII ion is centered in an N3O3 coordination environment with two different axial ligands. This is the first example of an octahedral complex of this multidentate ligand type with two different axial ligands, and the title compound can be considered as a precursor for a new class of complexes with potential spin‐crossover behavior. An infinite two‐dimensional hydrogen‐bond network is formed, involving the amine NH group, the methanol OH group and the carbonyl O atoms of the equatorial ligand. T‐dependent susceptibility measurements revealed that the complex remains in the high‐spin state over the entire temperature range investigated.  相似文献   

18.
A new 1,3,4‐thiadiazole bridging ligand, namely 3,3′‐[1,3,4‐thiadiazole‐2,5‐diyldi(thiomethylene)]dibenzoic acid (L), has been used to create the novel isomorphous complexes bis{μ‐3,3′‐[1,3,4‐thiadiazole‐2,5‐diyldi(thiomethylene)]dibenzoato}bis[(N,N‐dimethylformamide)copper(II)], [Cu2(C18H12N2O4S3)2(C3H7NO)2], (I), and bis{μ‐3,3′‐[1,3,4‐thiadiazole‐2,5‐diyldi(thiomethylene)]dibenzoato}bis[(N,N‐dimethylformamide)zinc(II)], [Zn2(C18H12N2O4S3)2(C3H7NO)2], (II). Both exist as centrosymmetric bicyclic dimers constructed through the synsyn bidentate bridging mode of the carboxylate groups. The two rings share a metal–metal bond and each of the metal atoms possesses a square‐pyramidal geometry capped by the dimethylformamide molecule. The 1,3,4‐thiadiazole rings play a critical role in the formation of a π–π stacking system that expands the dimensionality of the structure from zero to one. The thermogravimetric analysis of (I) indicates decomposition of the coordinated ligands on heating. Compared with the fluorescence of L in the solid state, the fluorescence intensity of (II) is relatively enhanced with a slight redshift, while that of (I) is quenched.  相似文献   

19.
The reactions of [Ru(N2)(PR3)(‘N2Me2S2’)] [‘N2Me2S2’=1,2‐ethanediamine‐N,N′‐dimethyl‐N,N′‐bis(2‐benzenethiolate)(2?)] [ 1 a (R=iPr), 1 b (R=Cy)] and [μ‐N2{Ru(N2)(PiPr3)(‘N2Me2S2’)}2] ( 1 c ) with H2, NaBH4, and NBu4BH4, intended to reduce the N2 ligands, led to substitution of N2 and formation of the new complexes [Ru(H2)(PR3)(‘N2Me2S2’)] [ 2 a (R=iPr), 2 b (R=Cy)], [Ru(BH3)(PR3)(‘N2Me2S2’)] [ 3 a (R=iPr), 3 b (R=Cy)], and [Ru(H)(PR3)(‘N2Me2S2’)]? [ 4 a (R=iPr), 4 b (R=Cy)]. The BH3 and hydride complexes 3 a , 3 b , 4 a , and 4 b were obtained subsequently by rational synthesis from 1 a or 1 b and BH3?THF or LiBEt3H. The primary step in all reactions probably is the dissociation of N2 from the N2 complexes to give coordinatively unsaturated [Ru(PR3)(‘N2Me2S2’)] fragments that add H2, BH4?, BH3, or H?. All complexes were completely characterized by elemental analysis and common spectroscopic methods. The molecular structures of [Ru(H2)(PR3)(‘N2Me2S2’)] [ 2 a (R=iPr), 2 b (R=Cy)], [Ru(BH3)(PiPr3)(‘N2Me2S2’)] ( 3 a ), [Li(THF)2][Ru(H)(PiPr3)(‘N2Me2S2’)] ([Li(THF)2]‐ 4 a ), and NBu4[Ru(H)(PCy3)(‘N2Me2S2’)] (NBu4‐ 4 b ) were determined by X‐ray crystal structure analysis. Measurements of the NMR relaxation time T1 corroborated the η2 bonding mode of the H2 ligands in 2 a (T1=35 ms) and 2 b (T1=21 ms). The H,D coupling constants of the analogous HD complexes HD‐ 2 a (1J(H,D)=26.0 Hz) and HD‐ 2 b (1J(H,D)=25.9 Hz) enabled calculation of the H? D distances, which agreed with the values found by X‐ray crystal structure analysis ( 2 a : 92 pm (X‐ray) versus 98 pm (calculated), 2 b : 99 versus 98 pm). The BH3 entities in 3 a and 3 b bind to one thiolate donor of the [Ru(PR3)(‘N2Me2S2’)] fragment and through a B‐H‐Ru bond to the Ru center. The hydride complex anions 4 a and 4 b are extremely Brønsted basic and are instantanously protonated to give the η2‐H2 complexes 2 a and 2 b .  相似文献   

20.
Two new CoII coordination polymers (CPs), namely, catena‐poly[[[(5‐amino‐2,4,6‐tribromobenzene‐1,3‐dicarboxylato‐κO)aquacobalt(II)]‐bis[μ‐1,3‐bis(imidazol‐1‐ylmethyl)benzene‐κ2N:N′]] 4.75‐hydrate], {[Co(C8H2Br3NO4)(C14H14N4)2(H2O)]·4.75H2O}n, (1), and poly[(μ‐5‐amino‐2,4,6‐tribromobenzene‐1,3‐dicarboxylato‐κ2O1:O3)[μ‐1,2‐bis(imidazol‐1‐ylmethyl)benzene‐κ2N:N′]cobalt(II)], [Co(C8H2Br3NO4)(C14H14N4)]n, (2), have been synthesized successfully by the assembly of multifunctional 5‐amino‐2,4,6‐tribromoisophthalic acid (H2ATBIP) and CoII ions in the presence of the flexible isomeric bis(imidazole) ligands 1,3‐bis(imidazol‐1‐ylmethyl)benzene (mbix) and 1,2‐bis(imidazol‐1‐ylmethyl)benzene (obix). The isomeric mbix and obix ligands have a big influence on the structures of CPs (1) and (2). CP (1) is composed of chains of nanometre‐sized elliptical rings, in which the CoII atom exhibits a distorted octahedral coordination geometry and ATBIP2− acts as a monodentate ligand. Two adjacent chains are interlinked by π–π stacking interactions and hydrogen bonds, resulting in a supramolecular double chain. Hydrogen‐bonded R86(16) rings extend adjacent supramolecular double chains into a two‐dimensional supramolecular layer. Halogen bonding and a hydrogen‐bonded R42(8) ring further link the two‐dimensional supramolecular layers, leading to the formation of a three‐dimensional supramolecular network. The CoII ion in CP (2) is tetracoordinated, exhibiting a distorted tetrahedral configuration. The ATBIP2− ligand exhibits a bis(monodentate) coordination bridging mode, linking adjacent CoII ions into zigzag chains, which are further bridged by the auxiliary bridging obix ligand, resulting in a two‐dimensional (4,4) topological network. Interlayer hydrogen and halogen–halogen bonding further extend the two‐dimensional layers into a three‐dimensional supramolecular network. A detailed analysis of the solid‐state UV–Vis–NIR diffuse‐reflectance spectra of (1) and (2) indicates that a wide optical band gap exists in both (1) and (2). CP (1) exhibits an irreversible dehydration–rehydration behaviour.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号