首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
An enantioselective iridium‐catalyzed allylic substitution with a set of highly unstabilized nucleophiles generated in situ from 2‐methylpyridines is described. Enantioenriched 2‐substituted pyridines, which are frequently encountered in natural products and pharmaceuticals, could be easily constructed by this simple method in good yields and excellent enantioselectivity. The synthetic utility of the pyridine products is demonstrated through the synthesis of a key intermediate of a reported Na+/H+ exchanger inhibitor and the total synthesis of (−)‐lycopladine A.  相似文献   

3.
4.
5.
6.
An iridium‐catalyzed cyclocondensation of amino alcohols and aldehydes is reported. Intramolecular allylic substitution by an enamine intermediate and subsequent in situ reduction furnishes 3,4‐disubstituted piperidines with high enantiospecificity and good diastereoselectivity. The modular approach and the broad functional group tolerance provide access to diverse piperidine derivatives, which were further functionalized to give a versatile set of products.  相似文献   

7.
A rhodium‐catalyzed system is introduced for in situ modification of biaryl‐type monophosphines with hydrosilanes through a PIII‐chelation‐assisted dehydrogenative silylation reaction. A series of ligands containing silyl groups with different steric and electronic properties were obtained with excellent regioselectivities. This method offers many advantages, including the use of commercially available phosphines, no requirement for an external ligand or oxidant, a broader substrate scope, high efficiency, and access to a single regioisomer. Based on the outstanding properties of the parent scaffolds, the silyl‐substituted phosphines serve as excellent ligands in Pd‐catalyzed asymmetric Suzuki coupling reactions.  相似文献   

8.
9.
An efficient Cs2CO3‐catalyzed oxidative coupling of thiols with phosphonates and arenes that uses molecular oxygen as the oxidant is described. These reactions provide not only a novel alkali metal salt catalyzed aerobic oxidation, but also an efficient approach to thiophosphates and sulfenylarenes, which are ubiquitously found in pharmaceuticals and pesticides. The reaction proceeds under simple and mild reaction conditions, tolerates a wide range of functional groups, and is applicable to the late‐stage synthesis and modification of bioactive molecules.  相似文献   

10.
Iridium catalysts containing dative nitrogen ligands are highly active for the borylation and silylation of C−H bonds, but chiral analogs of these catalysts for enantioselective silylation reactions have not been developed. We report a new chiral pyridinyloxazoline ligand for enantioselective, intramolecular silylation of symmetrical diarylmethoxy diethylsilanes. Regioselective and enantioselective silylation of unsymmetrical substrates was also achieved in the presence of this newly developed system. Preliminary mechanistic studies imply that C−H bond cleavage is irreversible, but not the rate‐determining step.  相似文献   

11.
12.
13.
14.
15.
The first oxidative C(sp3)−H/C(sp3)−H cross‐dehydrogenative coupling (CDC) reaction promoted by an internal oxidant is reported. This copper‐catalyzed CDC reaction of oxime acetates and trifluoromethyl ketones provides a simple and efficient approach towards 2‐trifluoromethyldihydropyrrol‐2‐ol derivatives in a highly diastereoselective manner by cascade C(sp3)−C(sp3) bond formation and cyclization. These products were further transformed into various significant and useful trifluoromethylated heterocyclic compounds, such as trifluoromethylated furan, thiophene, pyrrole, dihydropyridazine, and pyridazine derivatives. A trifluoromethylated analogue of an Aβ42 lowering agent was also synthesized smoothly. Preliminary mechanistic studies indicated that this reaction involves a copper(I)/copper(III) catalytic cycle with the oxime acetate acting as an internal oxidant.  相似文献   

16.
17.
18.
Recently, the development of more sustainable catalytic systems based on abundant first‐row metals, especially nickel, for cross‐coupling reactions has attracted significant interest. One of the key intermediates invoked in these reactions is a NiIII–alkyl species, but no such species that is part of a competent catalytic cycle has yet been isolated. Herein, we report a carbon–carbon cross‐coupling system based on a two‐coordinate NiII–bis(amido) complex in which a NiIII–alkyl species can be isolated and fully characterized. This study details compelling experimental evidence of the role played by this NiIII–alkyl species as well as those of other key NiI and NiII intermediates. The catalytic cycle described herein is also one of the first examples of a two‐coordinate complex that competently catalyzes an organic transformation, potentially leading to a new class of catalysts based on the unique ability of first‐row transition metals to accommodate two‐coordinate complexes.  相似文献   

19.
Described herein is an asymmetric allylic aromatization (AAAr) strategy that employs readily accessible equivalents of benzylic nucleophiles in iridium‐catalyzed allylic substitution reactions with the concomitant formation of aromatic rings by aromatization. The optimized reaction conditions involving a catalyst derived from a commercially available iridium precursor and the Carreira ligand are compatible with equivalents of benzylic nucleophiles derived from 4‐ or 5‐methyloxazoles, 5‐methylthiazoles, 4‐ or 5‐methylfurans, 2‐ or 3‐methylbenzofurans, 3‐methylbenzothiophene, 3‐methylindole, 1‐methylnaphthalene, and methylbenzene. This strategy provides straightforward accesses to valuable heterocyclic aromatic compounds, bearing a homobenzylic stereogenic center, in an enantiopure form and would be difficult to access otherwise. The versatility of the reaction was showcased by the further elaboration of the products into useful building blocks and a drug analogue.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号