首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Removal of nucleobases from the DNA backbone leads to the formation of abasic sites. The rate of abasic site formation is significantly increased for chemically damaged nucleobases. Thus, abasic sites serve as general biomarkers for the quantification of DNA damage. Herein, we show that capillary electrophoresis with laser-induced fluorescence (CE-LIF) can be used to detect the amount of abasic sites with very high sensitivity. For proof of concept, DNA was incubated with methylmethane sulfonate (MMS) and the damaged bases were removed by incubation at 80 °C. The resulting abasic sites were then tagged with a fluorescent aldehyde-reactive probe (FARP). The DNA was precipitated with ethanol, and then analyzed by CE-LIF. CE-LIF and HPLC analysis shows that the fluorescently tagged DNA (DNA-FARP) had a peak area directly proportional to the amount of N-7 methyl guanines. The CE-LIF method had a detection limit of 1.2 abasic sites per 1,000,000 bases or ca. 20 attomoles of abasic sites. This provides a general method for detecting DNA damage that is not only faster but also has comparable or better sensitivity than the alternative ELISA-like method.  相似文献   

2.
A new method was developed to allow direct visualization of damaged sites on individual DNA molecules. Fluorescence in situ hybridization on extended DNA molecules was modified to detect a single abasic site. Abasic sites were specifically labeled with a biotinylated aldehyde-reactive probe and fluorochrome-conjugated streptavidin. The light emitted by a single fluorochrome-DNA complex was calibrated. The number of abasic sites on the DNA molecule was estimated by counting each fluorochrome-DNA complex. The present study directly visualized and characterized the abasic sites of single DNA molecules.  相似文献   

3.
Aldehydic apurinic or apyrimidinic sites that lack a nucleobase moiety are one of the most common forms of toxic lesions in DNA. In the present study, a close structural analog of such a site, the 2-(hydroxymethyl) tetrahydrofuranyl residue, was synthesized in order to act as a model for damaged nucleic acid probes. Prepared oligodeoxyribonucleotides containing one, two or three abasic sites were hybridized to complementary sequences immobilized on a gold surface using the neutravidin-biotin interaction for study by thickness shear mode acoustic wave detector. Measurement of the complex electrical impedance of an AT-cut quartz device with immobilized biotinylated nucleotide allowed the detection of changes of series resonance frequency, Deltafs, and motional resistance, Rm, associated with duplex formation. The changes as detected by the acoustic wave method correlated well with the thermostability of DNA duplexes in solution. With respect to the latter, UV-monitored melting curves indicate that both the number of sites and their localization in the double-stranded structure influence the amount by which a 19 b.p. duplex is destabilized. The presence of 3 abasic sites completely destabilized the DNA duplex.  相似文献   

4.
DNA damage results in the formation of abasic sites from the formal hydrolysis of the glycosidic bond (AP) and several oxidized abasic lesions. Previous studies on AP sites revealed that DNA polymerases preferentially incorporated dA opposite them in approximately 80% of the replication events in Escherichia coli. These results were consistent with the hypothesis that the AP sites are noninstructive lesions due to the absence of a Watson-Crick base whose bypass adheres to the "A-rule." Recent replication studies of the oxidized abasic lesion, 2-deoxyribonolactone (L), revealed that DNA polymerase(s) does not apply the A-rule when bypassing it and incorporates large amounts of dG opposite L. These studies suggested that abasic sites such as L do direct polymerases to selectively incorporate nucleotides opposite them. However, it was not possible to determine the structural basis for this molecular recognition from these experiments. A group of oligonucleotides containing analogues of the AP and L lesions were synthesized and characterized as probes to gain insight into the structural basis for the distinct effect of 2-deoxyribonolactone on replication. These molecules will be useful tools for studying replication in cells and in vitro.  相似文献   

5.
5,6-Dihydro-2'-deoxyuridin-6-yl (1) was independently generated via photolysis of 3. The radical is an analogue of the major reactive species produced from thymidine upon reaction with hydroxyl radical, which is the dominant DNA-damaging agent produced by the indirect effect of gamma-radiolysis. Under aerobic conditions, the peroxyl radical (2) derived from 1 reacts approximately 82% of the time with either the 5'- or 3'-adjacent nucleotide to produce two contiguously damaged nucleotides, known as tandem lesions. The structures and distribution of tandem lesions were investigated using probes that selectively detect abasic sites, ESI-MS/MS, and competition kinetics. In addition to 2-deoxyribonolactone, nonoxidized abasic sites were detected. 18O-Labeling verified that H2O was the source of oxygen in the abasic sites, but that O2 was the source of the oxygen in the 5,6-dihydro-6-hydroxy-2'-deoxyuridine derived from 2. ESI-MS/MS experiments, in conjunction with isotopic labeling, identified several products and provided direct evidence for peroxyl radical addition to the adjacent thymine bases. Kinetic studies revealed that peroxyl radical addition to the 5'-thymine was favored by approximately 4-5-fold over C1'-hydrogen atom abstraction from the respective deoxyribose ring, and that 2-deoxyribonolactone formation accounts for approximately 11% of the total amount of tandem lesions produced. These results suggest that tandem lesions, whose biochemical effects are largely unknown, constitute a major family of DNA damage products produced by the indirect effect of gamma-radiolysis.  相似文献   

6.
Abasic sites are amongst the most frequent DNA lesions and result from spontaneous hydrolysis of the glycosidic bond or from the removal of damaged nucleobases. These depurination events can also occur on free deoxyribonucleoside triphosphates present in cells and lead to the formation of an abasic site triphosphate of which very little is known. Herein, we report the synthesis and biochemical characterization of the minimal triphosphate dФTP. Unexpectedly, dФTP is tolerated by various DNA polymerases and the incorporation efficiency obeys the A-rule. Single incorporation of dФMP units were also observed opposite abasic sites and the addition of prosthetic molecules mimicking base-pairs do not seem to favor the process.  相似文献   

7.
Combining the fluorescence properties of phenanthridinium as an artificial DNA base together with DNA-mediated charge transfer processes allows the homogeneous detection of DNA base mismatches and abasic sites.  相似文献   

8.
The site-specific recognition of abasic sites and single base bulges in duplex DNA by sterically expansive rhodium metalloinsertors has been investigated. Through DNA photocleavage experiments, Rh(bpy)2(chrysi)3+ is shown to bind both abasic sites and single base bulges site-specifically and, upon irradiation, to cleave the backbone of the defect-containing DNA. Photocleavage titrations reveal that the metal complex binds DNA containing an abasic site with high affinity (2.6(5) x 106 M-1), comparably to the metalloinsertor and a CC mismatch. The complex binds single base bulge sites with lower affinity (approximately 105 M-1). Analysis of cleavage products and the correlation of affinities with helix destabilization suggest that Rh(bpy)2(chrysi)3+ binds both lesions via metalloinsertion, as observed for Rh binding at mismatched sites, a binding mode in which the mismatched or unpaired bases are extruded from the helix and replaced in the base stack by the sterically expansive ligand of the metalloinsertor.  相似文献   

9.
We report the fluorogenic detection of the product of base excision repair (an abasic site) in a specific sequence of duplex DNA. This is achieved by DNA-templated chemistry, employing triple helix-forming probes that contain unnatural nucleobases designed to selectively recognize the site of a missing base. Light-up signals of up to 36-fold were documented, and probes could be used to monitor enzymatic removal of a damaged base.  相似文献   

10.
The promutagenic process known as translesion DNA synthesis reflects the ability of a DNA polymerase to misinsert a nucleotide opposite a damaged DNA template. To study the underlying mechanism of nucleotide selection during this process, we quantified the incorporation of various non-natural nucleotide analogs opposite an abasic site, a non-templating DNA lesion. Our kinetic studies using the bacteriophage T4 DNA polymerase reveal that the pi-electron surface area of the incoming nucleotide substantially contributes to the efficiency of incorporation opposite an abasic site. A remaining question is whether the selective insertion of these non-hydrogen-bonding analogs can be achieved through optimization of shape and pi-electron density. In this report, we describe the synthesis and kinetic characterization of four novel nucleotide analogs, 5-cyanoindolyl-2'-deoxyriboside 5'-triphosphate (5-CyITP), 5-ethyleneindolyl-2'-deoxyriboside 5'-triphosphate (5-EyITP), 5-methylindolyl-2'-deoxyriboside 5'-triphosphate (5-MeITP), and 5-ethylindolyl-2'-deoxyriboside 5'-triphosphate (5-EtITP). Kinetic analyses indicate that the overall catalytic efficiencies of all four nucleotides are related to their base-stacking properties. In fact, the catalytic efficiency for nucleotide incorporation opposite an abasic site displays a parabolic trend in the overall pi-electron surface area of the non-natural nucleotide. In addition, each non-natural nucleotide is incorporated opposite templating DNA approximately 100-fold worse than opposite an abasic site. These data indicate that selectivity for incorporation opposite damaged DNA can be achieved through optimization of the base-stacking properties of the incoming nucleotide.  相似文献   

11.
Amiloride (N-amidino-3,5-diamino-6-chloro-pyrazinecarboxamide hydrochloride) has two sets of hydrogen-bond forming sites suitable for target nucleotides and the phosphodiester DNA backbone by which a thymine base opposite an abasic site in DNA duplexes can be recognized with high selectivity and affinity, and it is applicable to the fluorescence detection of thymidine-related SNPs (single-nucleotide polymorphisms) of PCR amplification products.  相似文献   

12.
The fluorescence of a new aminocyanonaphthalene exhibits exquisite sensitivity to its environment and responds to a solvent change from water to hexane with greater than a 100-fold increase in intensity and 100 nm shift in λ(max.em). These properties should support many applications including the detection of abasic sites within duplex DNA as illustrated below.  相似文献   

13.
New nucleotide pairs applicable to formation of DNA triplexes were developed. We designed oligonucleotides incorporating 5-aryl deoxycytidine derivatives (dC5Ars) and cyclic deoxycytidine derivatives, dCPPP and dCPPI, having an expanded aromatic area, as the second strand. As pairing partners, two types of abasic residues (C3: propylene linker, phi: abasic base) were chosen. It was concluded that, when the 5-aryl-modified cytosine bases paired with the abasic sites in TFOs in a space-fitting manner, the stability of the resulting triplexes significantly increased. The recognition of C3 toward dC5Ars was selective because of the stacking interactions between their aromatic part and the nucleobases flanking the abasic site. These results indicate the potential utility of new nucleotide triplets for DNA triplex formation, which might expand the variety of structures and sequences and might be useful for biorelated fields such as DNA nanotechnologies.  相似文献   

14.
Base excision repair (BER) is the major mechanism for the correction of damaged nucleobases resulting from the alkylation and oxidation of DNA. The first step in the BER pathway consists of excision of the abnormal base by several specific DNA N-glycosylases. A decrease in BER activity was found to be related to an increased risk of carcinogenesis and aging. To investigate BER activities we set up a new device for DNA repair analysis based on surface plasmon resonance imaging (SPRi). Oligonucleotides bearing an abnormal nucleoside, namely 8-oxo-7,8-dihydro-2'-deoxyguanosine and (5'S)-5',8-cyclopurine-2'-deoxynucleoside, were grafted by a pyrrole electro-copolymerization process on a glass prism coated with a gold layer. The latter label-free DNA sensor chip permits the detection of N-glycosylase/AP-lyase activity as well as the binding of repair proteins to DNA damage without cleavage activity. Thus, the Fapy DNA N-glycosylase (Fpg) protein is shown as expected to bind and then cleave its natural substrate, namely 8-oxo-7,8-dihydro-guanine, together with the resulting abasic site. Using the current SPR imaging-based DNA array we observed an original binding activity of Fpg towards the (5'S)-5',8-cyclodAdenosine residue. These results altogether show that SPR imaging may be used to simultaneously and specifically detect recognition and excision of several damaged DNA nucleobases, and constitutes an interesting technique to screen inhibitors of DNA repair proteins.  相似文献   

15.
We use molecular modeling calculations to study the structure and the flexibility of abasic (AP sites) and for the design of anticancer drugs targeted against AP sites. For either adenine or cytosine on the opposing strand within the same sequence context, the results are in line with experimental data which show that the two unpaired bases lead to intrahelical forms, but with differences in induced curvature. Results on flexibility, indicate that the two duplexes have the same bending rigidity for cytosine. In previous work a series of polyfunctional molecules, such as ATAc, were designed to selectively recognize and cleave abasic sites in DNA. The nitrobenzamide group which was added to the ATAc molecule to obtain a new molecule, termed ATAc4, can induce a second lesion under irradiation in close proximity to the abasic site. The different conformations of ATAc4 interacting with a DNA oligomer containing a stable analog of the abasic site were compared to the photoinduced cleavage pattern observed experimentally. Received: 16 September 1999 / Accepted: 3 February 2000 / Published online: 12 May 2000  相似文献   

16.
An abasic site-containing DNA combined with lumiflavin allows amperometric determination of single nucleotide polymorphism through hydrogen bond-mediated nucleobase recognition in water by using abasic sites as a molecular recognition field.  相似文献   

17.
Deoxyribonolactone in DNA is an oxidized abasic site damage that is produced by a variety of physical and chemical agents such as gamma-irradiation and ene-diyne antibiotics. The extent and biological significance of the lesion are poorly documented due to the high lability of the damaged DNA. The chemistry of degradation of deoxyribonolactone-containing DNA was investigated using oligonucleotides of different length (5-, 11-, 23-, 34-mers) in which the lactone was photochemically generated, as already reported, from oligonucleotide precursors containing a photoactive nitroindole residue. The procedure was successfully extended to double-strand synthesis by irradiation of the preformed duplex in which one strand contained the nitroindole residue. The degradation kinetics were investigated as a function of pH, temperature, length, and ionic strength. The cleavage fragments resulting from beta- and delta-eliminations were isolated and identified by (1)H NMR. It was found that the lesion is extremely sensitive to pH and temperature while slightly dependent upon ionic strength, length, and sequence. The cleavage rates for the beta- and delta-elimination steps are of the same order of magnitude. The deoxyribonolactone site leads to greater instability of DNA than the "regular" deoxyribose abasic site.  相似文献   

18.
Translesion DNA synthesis, the ability of a DNA polymerase to misinsert a nucleotide opposite a damaged DNA template, represents a common route toward mutagenesis and possibly disease development. To further define the mechanism of this promutagenic process, we synthesized and tested the enzymatic incorporation of two isosteric 5-substituted indolyl-2'deoxyriboside triphosphates opposite an abasic site. The catalytic efficiency for the incorporation of the 5-cyclohexene-indole derivative opposite an abasic site is 75-fold greater than that for the 5-cyclohexyl-indole derivative. The higher efficiency reflects a substantial increase in the k(pol) value (compare 25 versus 0.5 s(-1), respectively) as opposed to an influence on ground-state binding of either non-natural nucleotide. The faster k(pol) value for the 5-cyclohexene-indole derivative indicates that pi-electron density enhances the rate of the enzymatic conformational change step required for insertion opposite the abasic site. However, the kinetic dissociation constants for the non-natural nucleotides are identical and indicate that pi-electron density does not directly influence ground-state binding opposite the DNA lesion. Surprisingly, each non-natural nucleotide can be incorporated opposite natural templating bases, albeit with a greatly reduced catalytic efficiency. In this instance, the lower catalytic efficiency is caused by a substantial decrease in the k(pol) value rather than perturbations in ground-state binding. Collectively, these data indicate that the rate of the conformational change during translesion DNA synthesis depends on pi-electron density, while the enhancement in ground-state binding appears related to the size and shape of the non-natural nucleotide.  相似文献   

19.
Base flipping is the movement of a DNA base from an intrahelical, base-stacked position to an extrahelical, solvent-exposed position. As there are favorable interactions for an intrahelical base, both hydrogen bonding and base stacking, base flipping is expected to be energetically prohibitive for an undamaged DNA duplex. For damaged DNA bases, however, the energetic cost of base flipping may be considerably lower. Using a selective, non-covalent assay for base flipping, the sequence dependence of base flipping in DNA sequences containing an abasic site has been studied. The dissociation constants of the zinc-cyclen complex to small molecules and single strands of DNA as well as the equilibrium constants for base flipping have been determined for these sequences. Molecular dynamics simulations of the zinc-cyclen complex bound to both single- and double-stranded DNA have been performed in an attempt to rationalize the differences in the dissociation constants obtained for the two systems. The results are compared to previous studies of base flipping in DNA containing an abasic site.  相似文献   

20.
Circular DNA is used as a template for the amplified detection of M13 phage ssDNA by a rolling circle amplification (RCA) process that synthesizes DNAzyme chains, thus enabling the colorimetric or chemiluminescent detection of the analyte.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号