首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
A laser flash photolysis-laser-induced fluorescence (LIF) technique has been employed to study the relaxation kinetics of vibrationally excited O2(X 3sigma(g)-. The time-resolved LIF excited B 3sigma(u)(-)-X 3sigma(g)- system has been recorded and analyzed by the integrated-profiles method. The rate coefficient for vibrational relaxation of O2(X 3sigma(g)-, nu = 8) by collisions with CF(4), [1.4 +/- 0.3(2sigma)] x 10(-11) cm3 molecule(-1) s(-1), indicates that CF4 is an efficient relaxant of O2(X 3sigma(g)- and that the propensity rule for O2 relaxation suggested by Mack et al. (J. A. Mack, K. Mikulecky and A. M. Wodtke, J. Chem. Phys., 1996, 105, 4105) has been observed experimentally.  相似文献   

2.
Jet-cooled high-resolution infrared spectra of partially deuterated hydronium ion (HD2O+) in the O-H stretch region (nu3 band) are obtained for the first time, exploiting the high ion densities, long absorption path lengths, and concentration modulation capabilities of the slit-jet discharge spectrometer. Least-squares analysis with a Watson asymmetric top Hamiltonian yields rovibrational constants and provides high level tests of ab initio molecular structure predictions. Transitions out of both the lower (nu3(+)<--0(+)) and the upper (nu3(-)<--0(-)) tunneling levels, as well as transitions across the tunneling gap (nu3(-)<--0(+)) are observed. The nu3(-)<--0(+) transitions in HD2O+ acquire oscillator strength by loss of D(3h) symmetry, and permit both ground-state-[27.0318(72) cm(-1)] and excited-state-[17.7612(54) cm(-1)]-tunneling splittings to be determined to spectroscopic precision from a single rovibrational band. The splittings and band origins calculated with recent high level ab initio six-dimensional potential surface predictions for H3O+ and isotopomers [X. C. Huang, S. Carter, and J. M. Bowman, J. Chem. Phys. 118, 5431 (2003); T. Rajamaki, A. Miani, and L. Halonen, J. Chem. Phys. 118, 10929 (2003)] are in very good agreement with the current experimental results.  相似文献   

3.
The first results are presented of a new experiment designed both to generate and characterize spectroscopically individual isomers of transition-metal cluster cations. As a proof of concept the one-photon mass-analyzed threshold ionization (MATI) spectrum of V3 has been recorded in the region of 44,000-45,000 cm-1. This study extends the range of a previous zero-kinetic-energy (ZEKE) photoelectron study of Yang et al. [Chem. Phys. Lett. 231, 177 (1994)] with which the current results are compared. The MATI spectra reported here exhibit surprisingly high resolution (0.2 cm-1) for this technique despite the use of large discrimination and extraction fields. Analysis of the rotational profile of the origin band allows assignment of the V3 ground state as and the V3+ ground state as , both with D3h geometry, in agreement with the density-functional theory study of the V3 ZEKE spectrum by Calaminici et al. [J. Chem. Phys. 114, 4036 (2001)]. There is also some evidence in the spectrum of transitions to the low-lying excited state of the ion. The vibrational structure observed in the MATI spectrum is, however, significantly different to and less extensive than that predicted in the density-functional theory study. Possible reasons for the discrepancies are discussed and an alternative assignment is proposed which results in revised values for the vibrational wave numbers of both the neutral and ionic states. These studies demonstrate the efficient generation of cluster ions in known structural (isomeric) forms and pave the way for the study of cluster reactivity as a function of geometrical structure.  相似文献   

4.
The nu 5 antisymmetric stretching vibration of 1 sigma+g C9 has been observed using direct infrared diode laser absorption spectroscopy of a pulsed supersonic cluster beam. Twenty-eight rovibrational transitions measured in the region of 2079-2081 cm-1 were assigned to this band. A combined least squares fit of these transitions with previously reported nu 6 transitions yielded the following molecular constants for the nu 5 band: nu 0 = 2 079.673 58(17) cm-1, B"= 0.014 321 4(10) cm-1, and B'=0.014 288 9(10) cm-1. The IR intensity of the nu 5 band relative to nu 6 was found to be 0.108 +/- 0.006. Theoretical predictions for the relative intensities vary widely depending upon the level of theory employed, and the experimental value reported here is in reasonable agreement only with the result obtained from the most sophisticated ab initio calculation considered (CCSD).  相似文献   

5.
We have performed extensive Monte Carlo simulations in the canonical (NVT) ensemble of the pair correlation function for square-well fluids with well widths lambda-1 ranging from 0.1 to 1.0, in units of the diameter sigma of the particles. For each one of these widths, several densities rho and temperatures T in the ranges 0.1< or =rhosigma(3)< or =0.8 and T(c)(lambda) less or approximately T less or approximately 3T(c)(lambda), where T(c)(lambda) is the critical temperature, have been considered. The simulation data are used to examine the performance of two analytical theories in predicting the structure of these fluids: the perturbation theory proposed by Tang and Lu [Y. Tang and B. C.-Y. Lu, J. Chem. Phys. 100, 3079 (1994); 100, 6665 (1994)] and the nonperturbative model proposed by two of us [S. B. Yuste and A. Santos, J. Chem. Phys. 101 2355 (1994)]. It is observed that both theories complement each other, as the latter theory works well for short ranges and/or moderate densities, while the former theory works for long ranges and high densities.  相似文献   

6.
Laser-induced fluorescence spectra of Br(2) entrained in a He supersonic expansion have been recorded in the Br(2) B-X, 8-0, 12-0, and 21-0 spectral regions at varying downstream distances, and thus different temperature regimes. Features associated with transitions of the T-shaped and linear He...Br(2)(X,nu(") = 0) complexes are identified. The changes in the relative intensities of the T-shaped and linear features with cooling in the expansion indicate that the linear conformer is energetically more stable than the T-shaped conformer. A He + Br(2)(X,nu(") = 0) ab initio potential-energy surface, computed at the coupled cluster level of theory with a large, flexible basis set, is used to calculate the binding energies of the two conformers, 15.8 and 16.5 cm(-1) for the T-shaped and linear complexes, respectively. This potential and an excited-state potential [M. P. de Lara-Castells, A. A. Buchachenko, G. Delgado-Barrio, and P. Villareal, J. Chem. Phys. 120, 2182 (2004)] are used to calculate the excitation spectra of He...(79)Br(2)(X,nu(") = 0) in the Br(2) B-X, 12-0 region. The calculated spectra are used to make spectral assignments and to determine the energies of the excited-state intermolecular vibrational levels accessed in the observed transitions. Temperature-dependent laser-induced fluorescence spectra and a simple thermodynamic model [D. S. Boucher, J. P. Darr, M. D. Bradke, R. A. Loomis, and A. B. McCoy, Phys. Chem. Chem. Phys. 6, 5275 (2004)] are used to estimate that the linear conformer is 0.4(2) cm(-1) more strongly bound than the T-shaped conformer. Two-laser action spectroscopy experiments reveal that the binding energy of the linear He...(79)Br(2)(X,nu(") = 0) conformer is 17.0(8) cm(-1), and that of the T-shaped He...(79)Br(2)(X,nu(") = 0) conformer is then 16.6(8) cm(-1), in good agreement with the calculated values.  相似文献   

7.
The model Hamiltonian approach of Koppel et al. [Adv. Chem. Phys. 57, 59 (1984)] is used to analyze the electronic spectroscopy of the nitrate radical (NO3). Simulations of negative ion photodetachment of NO3-, the X 2A2'<--B 2E' dispersed fluorescence spectrum of NO3, and the B 2E'<--X 2A2' absorption spectrum are all in qualitative agreement with experiment, indicating that the model Hamiltonian contains most or all of the essential physics that govern the strongly coupled X 2A2' and B 2E' electronic states of the radical. All 14 bands seen in the dispersed fluorescence spectrum below 2600 cm-1 are assigned based on the simulations, filling in a few gaps left by previous work, and 7 additional bands below 4000 cm-1 are tentatively assigned. The assignment is predicated on the assumption that the nu3 level of NO3 is near 1000 cm-1 rather than 1492 cm-1 as is presently believed. Support for this reassignment (which associates the 1492 cm-1 band with the nu1+nu4 level) comes from both the model Hamiltonian spectrum and a Fourier-transform infrared feature at 2585 cm-1 that is consistent with the large and positive cross anharmonicity between nu1 and nu4 needed for the alternative 1492 cm-1 assignment. An apparent systematic deficiency exists in the treatment of the model Hamiltonian for levels involving nu4. A discussion of the correlation between energy levels in the rigid D3h and C2v limits is illustrative, and provides insight into just how hard it is to treat the degenerate bending coordinate (q4) of NO3 accurately.  相似文献   

8.
Pure rotational transitions in the ground state for Ar-OH and Ar-OD [Y. Ohshima et al., J. Chem. Phys. 95, 7001 (1991) and Y. Endo et al., Faraday Discuss. 97, 341 (1994)], those in the excited states of the OH vibration, nu(s)=1 and 2, observed by Fourier-transform microwave spectroscopy in the present study, rotation-vibration transitions observed by infrared-ultraviolet double-resonance spectroscopy [K. M. Beck et al., Chem. Phys. Lett. 162, 203 (1989) and R. T. Bonn et al., J. Chem. Phys. 112, 4942 (2000)], and the P-level structure observed by stimulated emission pumping spectroscopy [M. T. Berry et al., Chem. Phys. Lett. 178, 301 (1991)] have been simultaneously analyzed to determine the potential energy surface of Ar-OH in the ground state. A Schrodinger equation, considering all the freedom of motions for an atom-diatom system in the Jacobi coordinate, R, theta, and r, was numerically solved to obtain energies of the rovibrational energy levels using the discrete variable representation method. A three-dimensional potential energy surface is determined by a least-squares fitting. In the analysis the potential parameters, obtained by ab initio calculations at the RCCSD(T) level of theory with a set of basis functions of aug-cc-pVTZ and midbond functions, are used as initial values. The determined intermolecular potential energy surface and its dependence on the OH monomer bond length are compared with those of an isovalent radical complex, Ar-SH.  相似文献   

9.
Quantum close-coupling scattering calculations of rotational energy transfer in the vibrationally excited CO due to collisions with He atom are presented for collision energies between 10(-5) and approximately 1000 cm-1 with CO being initially in the vibrational level upsilon=2 and rotational levels j=0,1,4, and 6. The He-CO interaction potential of Heijmen et al. [J. Chem. Phys. 107, 9921 (1997)] was adopted for the calculations. Cross sections for rovibrational transitions and state-to-state rotational energy transfer from selected initial rotational levels were computed and compared with recent measurements of Carty et al. [J. Chem. Phys. 121, 4671 (2004)] and available theoretical results. Comparison in all cases is found to be excellent, providing a stringent test for the scattering calculations as well as the reliability of the He-CO interaction potential by Heijmen et al.  相似文献   

10.
A previously developed modified Davidson scheme [C. Iung and F. Ribeiro, J. Chem. Phys. 121, 174105 (2005)] is applied to compute and analyze highly excited (nu2,nu6) eigenstates in DFCO. The present paper is also devoted to the simulations of the intramolecular vibrational energy redistribution (IVR) initiated by an excitation of the out-of-plane bending vibration (nnu6, n=2,4,6, . . . ,18, and 20). The multiconfiguration time-dependent Hartree method is exploited to propagate the corresponding six-dimensional wave packets. A comprehensive comparison with experimental data as well as with previous simulations of IVR in HFCO [G. Pasin et al. J. Chem. Phys. 124, 194304 (2006)] is presented.  相似文献   

11.
The Li+-(H2)n n=1-3 complexes are investigated through infrared spectra recorded in the H-H stretch region (3980-4120 cm-1) and through ab initio calculations at the MP2/aug-cc-pVQZ level. The rotationally resolved H-H stretch band of Li+-H2 is centered at 4053.4 cm-1 [a -108 cm-1 shift from the Q1(0) transition of H2]. The spectrum exhibits rotational substructure consistent with the complex possessing a T-shaped equilibrium geometry, with the Li+ ion attached to a slightly perturbed H2 molecule. Around 100 rovibrational transitions belonging to parallel Ka=0-0, 1-1, 2-2, and 3-3 subbands are observed. The Ka=0-0 and 1-1 transitions are fitted by a Watson A-reduced Hamiltonian yielding effective molecular parameters. The vibrationally averaged intermolecular separation in the ground vibrational state is estimated as 2.056 A increasing by 0.004 A when the H2 subunit is vibrationally excited. The spectroscopic data are compared to results from rovibrational calculations using recent three dimensional Li+-H2 potential energy surfaces [Martinazzo et al., J. Chem. Phys. 119, 11241 (2003); Kraemer and Spirko, Chem. Phys. 330, 190 (2006)]. The H-H stretch band of Li+-(H2)2, which is centered at 4055.5 cm-1 also exhibits resolved rovibrational structure. The spectroscopic data along with ab initio calculations support a H2-Li+-H2 geometry, in which the two H2 molecules are disposed on opposite sides of the central Li+ ion. The two equivalent Li+...H2 bonds have approximately the same length as the intermolecular bond in Li+-H2. The Li+-(H2)3 cluster is predicted to possess a trigonal structure in which a central Li+ ion is surrounded by three equivalent H2 molecules. Its infrared spectrum features a broad unresolved band centered at 4060 cm-1.  相似文献   

12.
The anion [Au2(CS3)2]2- has an unusually short Au-Au distance (2.80 A) for a binuclear Au(I) complex. We report detailed Raman studies of the nBu4N+ salt of this complex, including FT-Raman of the solid and UV/vis resonance Raman of dimethyl sulfoxide solutions. All five totally symmetric vibrations of the anion have been located and assigned. A band at delta nu = 125 cm-1 is assigned to nu (Au2). The visible-region electronic absorption bands (384 (epsilon 30,680) and 472 nm (epsilon 610 M-1 cm-1)) are attributable to CS3(2-) localized transitions, as confirmed by the dominance of nu sym(C-Sexo) (delta nu = 951 cm-1) in RR spectra measured in this region. An absorption band at 314 nm (22,250 M-1 cm-1) is assigned as the metal-metal 1(d sigma*-->p sigma) transition, largely because nu sym(C-Sexo) is not strongly enhanced in RR involving this band. Observation of the expected strong resonance enhancement of nu (Au2) was precluded as a result of masking by intense solvent Rayleigh scattering in the UV.  相似文献   

13.
All known vibration-rotation absorption lines of 13CH12CH accessing levels up to 6750 cm-1 were gathered from the literature. They were fitted simultaneously to J-dependent Hamiltonian matrices exploiting the well known vibrational polyad or cluster block diagonalization, in terms of the pseudo-quantum-numbers Ns=v1+v2+v3 and Nr=5v1+3v2+5v3+v4+v5, and accounting also for l parity and ef symmetry properties. The anharmonic interaction coupling terms known to occur from a pure vibrational fit in this acetylene isotopologue [Robert et al., J. Chem. Phys. 123, 174302 (2005)] were included in the model. A total of 12 703 transitions accessing 158 different (v1v2v3v4v5,l4l5) vibrational states was fitted with a dimensionless standard deviation of 0.99, leading to the determination of 216 vibration-rotation parameters. The experimental data included very weak vibration-rotation transitions accessing 18 previously unreported states, some of them forming Q branches with very irregular patterns.  相似文献   

14.
This article reports on the convergence of the exponential multireference wavefunction Ansatz (MRexpT) [J. Chem. Phys. 123, 84102 (2005)] and the single-reference based multireference coupled cluster Ansatz [J. Chem. Phys. 94, 1229 (1991)] with respect to higher cluster excitations. The approaches are applied to the H(4), P(4), and BeH(2) model systems according to the recently published analysis by Evangelista et al. [J. Chem. Phys. 125, 154113 (2006)]. The results show both MRexpT and SRMRCC to be highly accurate although SRMRCC shows problems due to its lack of Fermi vacuum invariance (symmetry breaking).  相似文献   

15.
Relative integrated cross sections are measured for rotationally inelastic scattering of NO(2Pi(1/2)),hexapole selected in the upper lambda-doublet level of the ground rotational state (j = 0.5), in collisions with He at a nominal energy of 514 cm(-1). Application of a static electric field E in the scattering region, directed parallel or antiparallel to the relative velocity vector v, allows the state-selected NO molecule to be oriented with either the N end or the O end towards the incoming He atom. Laser-induced fluorescence detection of the final state of the NO molecule is used to determine the experimental steric asymmetry, [formula: see text], which is equal to within a factor of (- 1) to the molecular steric effect, S(i-->f) is identical with (sigma(He-->NO) - (sigma(He-->ON))/(sigma(He-->NO) + sigma(He-->ON)). The dependence of the integral inelastic cross section on the incoming lambda-doublet component is also observed as a function of the final rotational (j'), spin-orbit (omega'), and lambda-doublet (epsilon') state. The measured steric asymmetries are significantly larger than previously observed for NO-Ar scattering, supporting earlier proposals that the repulsive part of the interaction potential is responsible for the steric asymmetry. In contrast to the case of scattering with Ar, the steric asymmetry of NO-He collisions is not very sensitive to the value of omega'. However, the lambda-doublet propensities are very different for [omega=0.5(F1)-->omega'= 1.5(F2)] and [omega=0.5(F1)-->omega'=0.5(F1)] transitions. Spin-orbit manifold conserving collisions exhibit a propensity for parity conservation at low deltaj, but spin-orbit manifold changing collisions do not show this propensity. In conjunction with the experiments, state-to-state cross sections for scattering of oriented NO(2Pi) molecules with He atoms are predicted from close-coupling calculations on restricted coupled-cluster methods including single, double, and noniterated triple excitations [J. Klos, G. Chalasinski, M. T. Berry, R.Bukowski, and S. M. Cybulski, J. Chem. Phys. 112, 2195 (2000)] and correlated electron-pair approximation [M. Yang and M. H. Alexander, J. Chem. Phys. 103, 6973 (1995)] potential energy surfaces. The calculated steric asymmetry S(i-->f) of the inelastic cross sections at Etr= 514 cm(-1) is in reasonable agreement with that derived from the present experimental measurements for both spin-manifold conserving (F1-->Fl) and spin-manifold changing (F1 --F2) collisions, except that the overall sign of the effect is opposite. Additionally, calculated field-free integral cross sections for collisions at Etr = 508 cm(-1) are compared to the experimental data of Joswig et al. [J. Chem. Phys.85, 1904 (1986)]. Finally, the calculated differential cross section for collision energy Etr= 491 cm(-1) is compared to experimental data of Westley et al. [J. Chem. Phys. 114, 2669 (2001)] for the spin-orbit conserving transition F1 (j = 0.5) -F1f (j' = 3.5).  相似文献   

16.
The vibrational spectra of linear AlC(3) and AlC(3)Al, formed by trapping the products of the dual laser evaporation of aluminum and carbon rods in solid Ar at approximately 10 K, were observed. Fourier transform infrared (FTIR) measurements of (13)C isotopic shifts are in good agreement with the predictions of density functional theory (DFT) B3LYP6-311+G(3df) calculations, enabling the first assignments of the nu(3)(sigma(u)) and nu(4)(sigma(u)) fundamentals of ((3)Sigma(g) (+)) linear AlC(3)Al at 1624.0 and 528.3 cm(-1), respectively, and the nu(2)(sigma) vibrational fundamental of ((2)Pi) linear AlC(3) at 1210.9 cm(-1).  相似文献   

17.
The Jahn-Teller effect in the first two excited states of the nitrate radical NO3 has yet to be experimentally elucidated. In this paper, direct evidence of strong Jahn-Teller interactions in the A state is presented from the first complete absorption spectrum of the A2E' <-- X2A(2)' transition of NO3 in the gas phase in the region 5900-9000 cm(-1), at moderate resolution (0.15 cm(-1)). The observed spectrum is consistent with Herzberg-Teller selection rules, and reveals strong linear and quadratic Jahn-Teller interactions in the A state. Several of the vibronic bands have been tentatively assigned, including nu2, nu3, an irregular progression in nu4, and combination bands involving nu1. Our assignments are consistent with the previous works of Weaver et al. [A. Weaver, D. W. Arnold, S. E. Bradforth, and D. M. Neumark, J. Chem. Phys. 94, 1740 (1991)] and Hirota et al. [E. Hirota, T. Ishiwata, K. Kawaguchi, M. Fujitake, N. Ohashi, and I. Tanaka, J. Phys. Chem. 107, 2829 (1997)] The band origin is not observed, in accord with the selection rules, but is determined to be T0=7064 cm(-1) from the observation of the 4(1)0 hot band at 6695.7 cm(-1). Rotational contour analysis of this band indicates that the upper state is an asymmetric rotor, establishing that NO3 undergoes static Jahn-Teller distortion in the ground vibrational level of the A state.  相似文献   

18.
The critical behavior of the Widom-Rowlinson [J. Chem. Phys. 52, 1670 (1970)] is studied in d = 3 dimensions by means of grand canonical Monte Carlo simulations. The finite-size scaling approach of Kim et al. [Phys. Rev. Lett. 91, 065701 (2003)] is used to extract the order parameter and the coexistence diameter. It is demonstrated that the critical behavior of the diameter is dominated by a singular term proportional to t(1-alpha), with t the relative distance from the critical point, and alpha the critical exponent of the specific heat. No sign of a term proportional to t(2beta) could be detected, with beta the critical exponent of the order parameter, indicating that pressure mixing in this model is small. The critical density is measured to be rhosigma3 = 0.7486 +/- 0.0002, with sigma the particle diameter. The critical exponents alpha and beta, as well as the correlation length exponent nu, are also measured and shown to comply with d = 3 Ising criticality.  相似文献   

19.
Previous state-selected spectra of methanol in the 5nu(1) OH stretch overtone region [O. V. Boyarkin, T. R. Rizzo, and D. S. Perry, J. Chem. Phys. 110, 11346 (1999)] revealed a structure indicating an intramolecular vibrational redistribution on three time scales. Whereas in that work, methanol in the 5nu(1) bright state was prepared close to the staggered conformation, methanol in the "partially eclipsed" conformation is prepared here by double resonance excitation through a torsionally excited intermediate state. The excited molecules are detected by infrared laser assisted photofragment spectroscopy. In partially eclipsed methanol, the strong coupling of the nu(1) OH stretch to the nu(2) CH stretch becomes weaker, but the coupling responsible for the widths of the narrowest features becomes stronger.  相似文献   

20.
Complexes of the benzenium ion (C(6)H(7)(+)) with N(2) or CO(2) have been studied by explicitly correlated coupled cluster theory at the CCSD(T)-F12x (x = a, b) level [T. B. Adler et al., J. Chem. Phys. 127, 221106 (2007)] and the double-hybrid density functional B2PLYP-D [T. Schwabe and S. Grimme, Phys. Chem. Chem. Phys. 9, 3397 (2007)]. Improved harmonic vibrational wavenumbers for C(6)H(7)(+) have been obtained by CCSD(T?)-F12a calculations with the VTZ-F12 basis set. Combining them with previous B2PLYP-D anharmonic contributions we arrive at anharmonic wavenumbers which are in excellent agreement with recent experimental data from p-H(2) matrix isolation IR spectroscopy [M. Bahou et al., J. Chem. Phys. 136, 154304 (2012)]. The energetically most favourable conformer of C(6)H(7)(+)·N(2) shows a π-bonded structure similar to C(6)H(7)(+)·Rg (Rg = Ne, Ar) [P. Botschwina and R. Oswald, J. Phys. Chem. A 115, 13664 (2011)] with D(e) ≈ 870 cm(-1). For C(6)H(7)(+)·CO(2), a slightly lower energy is calculated for a conformer with the CO(2) ligand lying in the ring-plane of the C(6)H(7)(+) moiety (D(e) ≈ 1508 cm(-1)). It may be discriminated from other conformers through a strong band predicted at 1218 cm(-1), red-shifted by 21 cm(-1) from the corresponding band of free C(6)H(7)(+).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号