首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study is to obtain further information about the source of proton relaxation in the Mn(II)-human serum albumin complex. For this purpose, proton relaxation rates in albumin solutions 1/T 1 and 1/T 2 were measured versus increasing amounts of manganese [Mnt]. The fractions of manganese bound to albumin [Mnb] and free manganese [Mnf] were then determined from proton relaxation rate enhancement data. Paramagnetic contributions of bound manganese to the observed relaxation rates (1/T 1p*)b and (1/T 2p*)b were also determined. Finally, the (1/T 2p*)b/(1/T 1p*)b ratio was used in a derived equation to estimate an effective correlation time τ. Mean τ value of the complex was found to be in the order of 3 ns, while the hydration number of bound manganese q was estimated to be about 4. The 1/τ was found to be the sum of the inverse values of rotational correlation time 1/τ r, mean residence time of water in hydration spheres of the complex 1/τ m, and longitudinal electronic relaxation time of manganese 1/τ s in the complex. In conclusion, the relaxation mechanism in albumin solutions containing Mn(II) can be interpreted through dipolar and scalar interactions modulated by τ r, τ m and τ s. This analysis enables one to get reasonable figures for the τ r and q of Mn(II) in albumin solution.  相似文献   

2.
Longitudinally detected ESR (LODESR) involves transverse ESR irradiation with a modulated source and observing oscillations in the spin magnetization parallel to the main magnetic field. In this study, radiofrequency-LODESR was used for oximetry by measuring the relaxation times of the electron. T1e and T2e were measured by investigating LODESR signal magnitude as a function of detection frequency. We have also predicted theoretically and verified experimentally the LODESR signal phase dependence on detection frequency and relaxation times. These methods are valid even for inhomogeneous lines provided that T1e>T2e. We have also developed a new method for measuring T1e, valid for inhomogeneous spectra, for all values of T1e and T2e, based on measuring the spectral area as a function of detection frequency. We have measured T1e and T2e for lithium phthalocyanine crystals, for the nitroxide TEMPOL, and for the single line agent Triarylmethyl (TAM). Furthermore, we have collected spectra from aqueous solutions of TEMPOL and TAM at different oxygen concentrations and confirmed that T1e values are reduced with increased oxygen concentration. We have also measured the spin-lattice electronic relaxation time for degassed aqueous solutions of the same agents at different agent concentrations. T1e decreases as a function of concentration for TAM while it remains independent of free radical concentration for TEMPOL, a major advantage for oxygen mapping. This method, combined with the ability of LODESR to provide images of exogenous free radicals in vivo, presents an attractive alternative to the conventional transverse ESR linewidth based oximetry methods.  相似文献   

3.
For the first time submillimetric microwaves (λ<1 mm) are used to observe Azbel' Kaner cyclotron resonance in metals. The very high frequency used (typicallyF≅400 GHz) gives a large value ofωτ (typically 500) and therefore very sharp peaks. The fundamental resonance fieldH c=m * cω/e is rather high (typically 200 KG), so subharmonicsH c/n can be observed at many values ofH in the field region 0–27 KG. If relatively few electrons participate in the resonance and ifω cτ≧50 (ω c=eH/m * c,τ relaxation time) thenChambers has shown that the line shapes are independent of relaxation time while the fractional linewidthΔH/H varies as l/ωτ. For the belly orbit in pure copper the conditions of Chambers' theory are satisfied forH≧20 KG parallel to [111] axis.m * is a minimum andτ=1.8×10−10 s.  相似文献   

4.
The relaxation of the superconducting transition temperature T c in YBa2Cu3O6.38 is investigated with increasing oxygen order in the CuOx plane under 1 GPa pressure and with decreasing oxygen order after the pressure is relieved. It is established that the oxygen disordering process is more rapid than the pressure-induced ordering process: The ratio of the relaxation times of T c in these processes τ ord/τ disord≈5. This behavior could be caused by different mechanisms of the pressure-induced increase in the Cu-O chain length and decrease of this length after pressure relief. Fiz. Tverd. Tela (St. Petersburg) 40, 1968–1973 (November 1998)  相似文献   

5.
Nuclear magnetic resonance relaxation measurements of bulk fluids provide a sensitive probe of the dynamics of molecular motion. Dissolved oxygen can interfere with this technique as its paramagnetic nature leads to a reduction of the paramagnetic relaxation times of the fluids. We studied this effect for the relaxation properties of crude oils that are in general characterized by a distribution of relaxation times. The samples were stock tank oils that have been exposed to air. We comparedT 1 andT 2 relaxation time distributions and their correlation functions of the initial (oxygenated) samples with those from the deoxygenated samples. Oxygen was removed from the oils with a freeze-thaw technique. As expected, the effect of oxygen is most apparent in oils with long relaxation times. In these oils the effect of oxygen can be described by an additional relaxation rate 1/T 1,2 ox to the transverse and longitudinal relaxation rates that is sample dependent but does not vary within the relaxation time distribution of the oil. Values of 1/T 1,2 ox for different crude oils were found to be in the range of 2.5 to 8.3 s. For crude oils that have components with relaxation times less than 100 ms, no significant oxygen effect is observed.  相似文献   

6.
We report the results of an experimental investigation of the longitudinal relaxation time T 1 of the electronic polarization of the ground state of potassium atoms in cells with an antirelaxation coating on the walls. Investigations were performed for a number of cells at temperature T=24°C. The maximum recorded relaxation times τ are 3.6, 4.3, and 5.2 s for cells with diameter D=50,75, and 100 nm, respectively. These are the longest longitudinal relaxation times ever recorded in coated cells. The transverse relaxation time was measured for these cells at the same temperature: T 2=0.72,1.1, and 1.4 s, respectively. Pis’ma Zh. éksp. Teor. Fiz. 70, No. 3, 198–202 (10 August 1999)  相似文献   

7.
Various experimental techniques have revealed that the predominant intrinsic point defects in BaF2 are anion Frenkel defects. Their formation, enthalpy and entropy, as well as the corresponding parameters for the fluorine vacancy and fluorine interstitial motion have been determined. In addition, low temperature dielectric relaxation measurements in BaF2doped with uranium leads to the parameters τ0, E in the Arrhenius relation τ = τ0 exp(E/k B T) for the relaxation time τ. For the relaxation peak associated with a single tetravalent uranium, the migration entropy deduced from the pre-exponential factor τ0 is smaller than the anion Frenkel defect formation entropy by almost two orders of magnitude. We show that, despite their great variation, the defect entropies and enthalpies are interconnected through a model based on anharmonic properties of the bulk material which have been recently studied by employing density-functional theory and density-functional perturbation theory.  相似文献   

8.
A phenomenological analysis of the ortho-positronium (o-Ps) annihilation from positron annihilation lifetime spectroscopy (PALS) and the dynamics from broadband dielectric spectroscopy (BDS) are reported on a small molecular glass former of intermediate H-bonding and fragility: salol. The dielectric spectra extend over a very broad frequency range of about 2 × 10−2−3.5 × 1011 Hz, providing information on the α-relaxation, the secondary relaxation giving rise to the excess wing, and the shallow high-frequency minimum in the micro- to milli-meter wave range. A number of empirical correlations between the o-Ps lifetime, τ 3(T), and the various spectral and relaxation features have been observed. Thus, the phenomenological evaluation of the τ 3(T) dependence of the PALS response of the amorphous sample reveals three characteristic PALS temperatures: T g PALS, T b1 L = 1.15T g PALS and T b2 L = 1.25T g PALS, which are discussed in relation to similar findings for some typical small molecular vdW- and H-bonded glass formers. A slighter change of the slope at T b1 L appears to be related to the transition from excess wing to the primary α-process-dominated behavior, with the secondary process dominating in the deeply supercooled liquid state below T b1 L . The high-temperature plateau effect in the τ 3(T) plot occurs at T b2 L and agrees with the characteristic Stickel temperature, T B ST, marking a qualitative change of the primary α process, but it does not follow the relation T b2 L < T α [τ 3(T b2) < τ α ]. Both effects at T b1 L and T b2 L correlate with two crossovers in the spectral shape and related non-exponentiality parameter of the structural relaxation, β KWW. Finally, the application of the two-order parameter (TOP) model to the structural relaxation as represented by the primary α relaxation times from BDS leads to the characteristic TOP temperature, T m c , close to T b1 from PALS. Within this model the phenomenological interpretation is offered based on changes in the probability of occurrence of solid-like and liquid-like domains to explain the dynamic as well as PALS responses. In summary, all the empirical correlations support further very close connections between the PALS response and the dielectric relaxation behavior in small molecule glass formers.  相似文献   

9.
The thermodynamical and mechanical properties of (fragile and strong) glass are modeled based on a generalised activation energy relationship log τ = ΔG β /RTn(T′) process of glass-forming liquids. This cooperative process involves 1/n(T′) elementary β motions of activation Gibbs energy ΔG β dependent on the equivalent temperature T′, the temperature of the liquid in equilibrium having the volume of the glass, function of temperature and aging conditions. From this modified VFT law the relaxation of any properties (V , H , stress, creep) can be calculated and approximated by the Kohlrausch function. This model predicts consistency relationships for: a) the temperature (and aging time) variation of the Kohlrausch exponent; b) the temperature dependence of the stabilisation time domain of strong and fragile glass; c) the linear relation between the activation parameters (E * energy, S * entropy, V * volume) of the α and β transition. The Lawson and Keyes (LK) relations are recalled and it is shown that these relations (somewhat equivalant to the compensation law or Meyer-Neldel rule) are observed generally in glass. Morever the (macroscopic) ratios ΔH/ΔV observed during aging or after a temperature jump and the (microscopic) ratio E */V * are found equal to κγ (κ compressibily, γ Grüneisen parameter), in agreement with the LK predictions. From various experiments and in agreement with predictions of this model we conclude that the Grüneisen parameter γ B (pressure derivative of the bulk modulus) and the Mean Square Displacement (MSD) characterising the anharmonicity of solids (and liquids) are the main parameters which govern the relaxation properties of the glass state. Linear relations between the parameters γ B , the fragility m, and the Kohlrausch exponent n g at T g are explained. These correlations underscore a strong relationship between the fragilty of glass formers and the extent of the anharmonicity in the interatomic interactions.  相似文献   

10.
Plasma parameters in the upgraded Trimyx-M Galathea   总被引:1,自引:0,他引:1  
Results are presented from measurements of the plasma parameters in the upgraded Trimyx-M Galathea. After the barrier magnetic field and the energy of the injected hydrogen plasma bunch were increased to B bar ∼ 0.1 T and W 0 ≈ 200 J, respectively, the following plasma parameters were achieved: the density n ∼ 5 × 1013 cm−3, the plasma confinement time τ* = 800–900 μs, the elergy of the confined plasma W 1 ∼ 100 J, the ratio of the plasma pressure to the barrier magnetic pressure β 0 ∼ 0.2, the electron temperature T e ∼ 20 eV, and the ion temperature T i ∼ 2T e . The maximum time during which the plasma density decreased e-fold, τ p , was found to be 300 μs at B bar = 0.1 T, which agrees with the classical transport model.  相似文献   

11.
S. N. Kaul  Anita Semwal 《Pramana》2003,61(6):1129-1144
Isothermal remanent magnetization decay,M r(t), and ‘in-field’ growth of zero-field-cooled magnetization,M ZFC(t), with time have been measured over four decades in time at temperatures ranging from 0.25T c to 1.25T c (whereT c is the Curie temperature, determined previously for the same sample from static critical phenomena measurements) for a nearly ordered intermetallic compound Ni3Al, which is an experimental realization of a three-dimensional (d = 3) ferromagnet with weak quenched random-exchange disorder. None of the functional forms ofM r(t) predicted by the existing phenomenological models of relaxation dynamics in spin systems with quenched randomness, but only the expressions and closely reproduce such data in the present case. The most striking features of magnetic relaxation in the system in question are as follows: Aging effects are absent in bothM r t andM ZFC(t) at all temperatures in the temperature range covered in the present experiments. A cross-over in equilibrium dynamics from the one, characteristic of a pured = 3 ferromagnet with complete atomic ordering and prevalent at temperatures away from Tc, to that, typical of ad = 3 random-exchange ferromagnet, occurs asT → Tc. The relaxation times τ1(T)(τ1 (T)) and τ2(T)(τ2 (T)) exhibit logarithmic divergence at critical temperatures and ; and both increase with the external magnetic field strength,H, such that at any given field value, . The exponent characterizing the logarithmic divergence in τ 1 (T) and τ 2 T possesses a field-independent value of ≃16 for both relaxation times. Of all the available theoretical models, the droplet fluctuation model alone provides a qualitative explanation for some aspects of the present magnetic relaxation data  相似文献   

12.
A pure phase-encoding MRI technique, single-point ramped imaging withT1enhancement, SPRITE, is introduced for the purpose of gas phase imaging. The technique utilizes broadband RF pulses and stepped phase encode gradients to produce images, substantially free of artifacts, which are sensitive to the gasT1andT*:2relaxation times. Images may be acquired from gas phase species with transverse relaxation times substantially less than 1 ms. Methane gas images,1H, were acquired in a phantom study. Sulfur hexafluoride,19F, images were acquired from a gas-filled porous coral sample. High porosity regions of the coral are observed in both the MRI image and an X-ray image. Sensitivity and resolution effects due to signal modulation during the time-efficient acquisition are discussed. A method to increase the image sensitivity is discussed, and the predicted improvement is shown through 1D images of the methane gas phantom.  相似文献   

13.
On the basis of current theoretical views on the critical phenomena in isotropic Heisenberg ferromagnets the power temperature behavior Λ=c(τ)λ0τ-w has been derived for the muon spin relaxation rate Λ as π-T c −1 (T-T c ) → 0+. It is shown that the crossover from an exchange critical regime to a dipolar one is accompanied not only with the change in the critical exponentw in the above law, but also with the reduction of the coefficientc(π). A comparison with the temperature behaviour of the inverse nuclear relaxation timet R −1 measured in the PAC experiment is carried out.  相似文献   

14.
Evidence that pinning on linear or planar defects dominates the vortex dynamics in YBa2Cu3O7−x (YBCO) films is provided by complex impedance measurements at temperature 8 K<T<T c and magnetic field 0<B<6 T. Below the vortex lattice melting transition Bg(T) but above a threshold field Bp≈8(1-T/T c ) T, the inductance of vortices increases as B2, much less rapidly than predicted for collective pinning of vortices by point defects. Above the vortex melting line, critical scaling persists over the region Bg(T<B<B*(T) where the vortex correlation length ξ exceeds a characteristic length scale ξ*≡ξ(B=B*)≈450?. The value of ξ* is not sensitive to Al-doping in the Cu sites in the lattice and is close to the size of twin domains in the film. The nature of the observed crossovers is discussed in terms of available theoretical models for a glass-liquid transition at Bg.  相似文献   

15.
We show that the dynamics of disordered charge density waves (CDWs) and spin density waves (SDWs) is a collective phenomenon. The very low temperature specific heat relaxation experiments are characterized by: (i) “interrupted” ageing (meaning that there is a maximal relaxation time); and (ii) a broad power-law spectrum of relaxation times which is the signature of a collective phenomenon. We propose a random energy model that can reproduce these two observations and from which it is possible to obtain an estimate of the glass cross-over temperature (typically T g≃ 100-200 mK). The broad relaxation time spectrum can also be obtained from the solutions of two microscopic models involving randomly distributed solitons. The collective behavior is similar to domain growth dynamics in the presence of disorder and can be described by the dynamical renormalization group that was proposed recently for the one dimensional random field Ising model [D.S. Fisher, P. Le Doussal, C. Monthus, Phys. Rev. Lett. 80, 3539 (1998)]. The typical relaxation time scales like ∼τexp(T g/T). The glass cross-over temperature Tg related to correlations among solitons is equal to the average energy barrier and scales like T g∼ 2xξΔ. x is the concentration of defects, ξ the correlation length of the CDW or SDW and Δ the charge or spin gap. Received 12 December 2001  相似文献   

16.
The relaxation of the specific heat and the entropy to their equilibrium values is investigated numerically for the three-dimensional Coulomb glass at very low temperatures. The long time relaxation follows a stretched exponential function, f (t) = f 0exp - (t/τ)β , with the exponent β increasing with the temperature. The relaxation time diverges as an Arrhenius law when T→ 0. Received 24 May 2001 and Received in final form 12 September 2001  相似文献   

17.
This paper examines how an electric field relaxes when a discontinuous large carrier-depleting voltage applied to high-resistance symmetric metal-semiconductor-metal (MSM) and metal-insulator-semiconductor-insulator-metal (MISIM) structures having a single impurity level, and how its energy level ɛ t=E cE t and the tunneling transparency T n,p of the metal-semiconductor or metal-insulator boundary affect the relaxation. It is shown that the relaxation of the field and the form of its steady-state distribution depend on the ratio of the time constant t p in the majority-carrier (hole) region to the ionization time τ t −1 n (n *+n 1)+α p (p *+p 1) of a deep trap in the bulk. This ratio determines the relative contributions of free ρ p,n and bound charge dnsities ρ t (where α n,p is the coefficient for capture by an impurity, and p *, n *, p 1, n 1 are equilibrium concentrations and Shockley-Read constants in the bulk). For τ t ≈(τ t )maxt p t ≫ it is found that ρ p,n and ρ t ≫ρ p,n , which corresponds to a trap energy close to , independent of the value of T n,p , decaying oscillations arise in the concentration distribution, bulk charge, and field appear in the bulk. The amplitude of these oscillations reaches a maximum at time t≈0.4τ t. Decreasing the ratio α pn causes τ t to deviate from (τ t)max. When this happens, the field no longer oscillates; instead, it increases with positive curvature in the cathode portion of the bulk. The quantity T n,p determines the behavior of the field in the neighborhood of the anode. The value of (dE/dx)0 is positive for MSM structures (T n,p ≈1), and negative for MISIM structures (T n,p ≈0). For transparencies close to a critical value T n,p 0 , the field in the structure remains almost uniform over an impurity ionization time. Fiz. Tverd. Tela (St. Petersburg) 39, 1775–1782 (October 1997)  相似文献   

18.
A novel microscopic method of muon spin rotation for negative muon (μ) attached to oxygen is applied on highT c materials LaSrCuO. The paramagnetic shift and relaxation rate are measured as a function of Sr concentration and temperature. Analysis shows the large difference in shift and relaxation between two different sites. A large anisotropy was also observed by preliminary measurements along different crystalline axes.  相似文献   

19.
The longitudinalμ +-spin relaxation rate has been measured on a high-purity spherical α-iron single crystal at temperaturesT down to 20 mK and in applied magnetic fieldsB appl parallel to 〈111〉 up to 3 T. Only above 1 K can the data be satisfactorily described by one rate constantГ. At 1 T≤B appl≤2 T and 50 mK≤T≤300 mK, oscillations (“wiggles”) were in addition superimposed on the longitudinal relaxation. A qualitative understanding of the measurements may be achieved in terms of the increasing influence of internal stresses onμ + diffusion as the temperature is lowered.  相似文献   

20.
The spin dynamics of the muonium (Mu) atom diffusing quantum mechanically in solid nitrogen (s-14N2) has been studied using the technique of Mu spin relaxation. A strong relationship between longitudinal (T 1 –1 ) and transverse (T 2 –1 ) relaxation rates (familiar in NMR) has been experimentally demonstrated for the first time for muonium relaxation. At low temperatures the results are inconsistent with diffusion models using a single correlation time c; this is taken as evidence for the intrinsic inhomogeneity of the problem. The temperature dependence of theaverage Mu hop rate c –1 gives clear evidence that Mu quantum diffusion ins-N2 is governed by the two-phonon interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号