首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A simple spectrophotometric system, based on a prolonged pseudo-liquid drop device as an optical cell and a handheld charge coupled device (CCD) as a detector, was constructed for automatic liquid-liquid extraction and spectrophotometric speciation of trace Cr(VI) and Cr(III) in water samples. A tungsten halogen lamp was used as the light source, and a laboratory-constructed T-tube with two open ends was used to form the prolonged pseudo-liquid drop inside the tube. In the medium of perchloric acid solution, Cr(VI) reacted with 1,5-diphenylcarbazide (DPC); the formed complex was automatically extracted into n-pentanol, with a preconcentration ratio of about 5. The organic phase with extracted chromium complex was then pumped through the optical cell for absorbance measurement at 548 nm. Under optimal conditions, the calibration curve was linear in the range of 7.5 - 350 microg L(-1), with a correlation coefficient of 0.9993. The limit of detection (3sigma) was 7.5 microg L(-1). That Cr(III) species cannot react with DPC, but can be oxidized to Cr(VI) prior to determination, is the basis of the speciation analysis. The proposed speciation analysis was sensitive, yet simple, labor-effective, and cost-effective. It has been preliminarily applied for the speciation of Cr(VI) and Cr(III) in spiked river and tap water samples. It can also be used for other automatic liquid-liquid extraction-spectrophotometric determinations.  相似文献   

2.
Agrawal YK  Sharma KR 《Talanta》2005,67(1):112-120
A new functionalized calix[6]crown hydroxamic acid is reported for the speciation, liquid-liquid extraction, sequential separation and trace determination of Cr(III), Mo(VI) and W(VI). Chromium(III), molybdenum(VI) and tungsten(VI) are extracted at pH 4.5, 1.5 M HCl and 6.0 M HCl, respectively with calixcrown hydroxamic acid (37,38,39,40,41,42-hexahydroxy7,25,31-calix[6]crown hydroxamic acid) in chloroform in presence of large number of cations and anions. The extraction mechanism is investigated. The various extraction parameters, appropriate pH/M HCl, choice of solvent, effect of the reagent concentration, temperature and distribution constant have been studied. The speciation, preconcentration and kinetic of transport has been investigated. The maximum transport is observed 35, 45 and 30 min for chromium(III), molybdenum(VI) and tungsten(IV), respectively. For trace determination the extracts were directly inserted into the plasma for inductively coupled plasma atomic emission spectrometry, ICP-AES, measurements of chromium, molybdenum and tungsten which increase the sensitivity by 30-fold, with detection limits of 3 ng ml−1. The method is applied for the determination of chromium, molybdenum and tungsten in high purity grade ores, biological and environmental samples. The chromium was recovered from the effluent of electroplating industries.  相似文献   

3.
A sensitive and simple method for determination of chromium species after separation and preconcentration by solid phase extraction (SPE) has been developed. For the determination of the total concentration of chromium in solution, Cr(VI) was efficiently reduced to Cr(III) by addition of hydroxylamine and Cr(III) was preconcentrated on a column of immobilised ferron on alumina. The adsorbed analyte was then eluted with 5?mL of hydrochloric acid and was determined by flame atomic absorption spectrometery. The speciation of chromium was affected by first passing the solution through an acidic alumina column which retained Cr(VI) and then Cr(III) was preconcentrated by immobilised ferron column and determined by FAAS. The concentration of Cr(VI) was determined from the difference of concentration of total chromium and Cr(III). The effect of pH, concentration of eluent, flow rate of sample and eluent solution, and foreign ions on the sorption of chromium (III) by immobilised ferron column was investigated. Under the optimised conditions the calibration curve was linear over the range of 2–400?µg?L?1 for 1000?mL preconcentration volume. The detection limit was 0.32?µg?L?1, the preconcentration factor was 400, and the relative standard deviation (%RSD) was 1.9% (at 10?µg?L?1; n?=?7). The method was successfully applied to the determination of chromium species in water samples and total chromium in standard alloys.  相似文献   

4.
A new, simple, rapid and sensitive separation, preconcentration and speciation procedure for chromium in environmental liquid and solid samples has been established. The present speciation procedure for Cr(III) and Cr(VI) is based on combination of carrier element-free coprecipitation (CEFC) and flame atomic absorption spectrometric (FAAS) determinations. In this method a newly synthesized organic coprecipitant, 5-chloro-3-[4-(trifluoromethoxy) phenylimino]indolin-2-one (CFMEPI), was used without adding any carrier element for coprecipitation of chromium(III). After reduction of chromium(VI) by concentrated H2SO4 and ethanol, the procedure was applied for the determination of total chromium. Chromium(VI) was calculated as the difference between the amount of total chromium and chromium(III). The optimum conditions for coprecipitation and speciation processes were investigated on several commonly tested experimental parameters, such as pH of the solution, amount of coprecipitant, sample volume, etc. No considerable interference was observed from the other investigated anions and cations, which may be found in natural water samples. The preconcentration factor was found to be 40. The detection limit for chromium(III) corresponding to three times the standard deviation of the blank (N = 10) was found 0.7 μg L−1. The present procedure was successfully applied for speciation of chromium in several liquid and solid environmental samples. In order to support the accuracy of the method, the certified reference materials (CRM-TMDW-500 Drinking Water and CRM-SA-C Sandy Soil C) were analyzed, and standard APDC-MIBK liquid-liquid extraction method was performed. The results obtained were in good agreement with the certified values.  相似文献   

5.
Application of Dowex 50W-X8 loaded with 2-amino-benzenethiol for preconcentration of total chromium (Cr(VI) and Cr(III)) in water samples and subsequent determination by inductively coupled plasma-atomic emission spectrometry was studied. The reagent 2-amino-benzenethiol loaded onto the resin effectively reduced Cr(VI) to Cr(III) and total chromium (both Cr(VI) and Cr(III)) formed chelate complex with the reagent in the Cr(III) valence state. Experimental parameters such as preconcentration time, solution flow rates, pH, and concentration of the eluent were optimized. The method has been applied for the determination of total chromium in seawater samples in the range of 0.1–200?µg?L?1. A detection limit of 0.3?µg?L?1 was achieved, and the relative standard deviation was about 5%.  相似文献   

6.
Methods for the on-line chromatographic preconcentration of Cr(III) and Cr(VI) have been developed. Cr(VI) has been preconcentrated on an RP C18 silica based column with tetrabutylammonium-bromide (TBABr) as ion-pairing agent. Specially for Cr(III) a new and effective preconcentration technique based on the sorption of Cr(III)-ions in a C18 column in presence of KH-phthalate has been developed. The efficiency of sample introduction into the atomic emission spectrometer could be improved by hydraulic high pressure nebulization. For the detection of chromium the acetylene/N(2)O flame has been used as a powerful emission spectrometric source. Applying these steps the detection limit (3sigma) could be improved to 25 pg/mL for Cr(III) and to 20 pg/mL for Cr(VI). The method has been applied for the chromium speciation in natural water samples.  相似文献   

7.
Diperoxo chromium oxide is produced by reaction of hydrogen peroxide on chromium(VI). Diperoxo chromium creates a complex with ethyl acetate, while chromium(III) remains in an unchanged form in the aqueous phase. By this means chromium(VI) can be extracted into ethyl acetate from the aqueous phase. The optimal conditions of Cr(III)-Cr(VI) separation, as well as the chromium content of the ethyl acetate phase were determined with graphite furnace atomic absorption spectrometry. In the second extraction of Cr(VI) from ethyl acetate back into water phase an additional preconcentration of chromium(VI) can be carried out. The detection limit (3σ) of the developed method found to be 200 ng dm− 3 for the first extraction and 50 ng dm− 3 after using the twofold extraction. In consequence of the matrix free ethyl acetate phase after the first extraction, with this separation a really extensive preconcentration of chromium(VI) can be realized.  相似文献   

8.
A sensitive and selective method has been developed for the determination of chromium in water samples based on using cloud point extraction (CPE) preconcentration and determination by flame atomic absorption spectrometry (FAAS). The method is based on the complexation of Cr(III) ions with Brilliant Cresyl Blue (BCB) in the presence of non-ionic surfactant Triton X-114. Under the optimum conditions, the preconcentration of 50 mL of water sample in the presence of 0.5 g/L Triton X-114 and 1.2 × 10−5 M BCB permitted the detection of 0.42 μg/L chromium(III). The calibration graph was linear in the range of 1.5–70 μg/L, and the recovery of more than 99% was achieved. The proposed method was used in FAAS determination of Cr(III) in water samples and certified water samples. In addition, the developed CPE-FAAS method was also used for speciation of the inorganic chromium species after reduction of Cr(VI) to Cr(III) using a thiosulphate solution of 120 mg/L in the presence of Hg(II) ion as a stabilizer.  相似文献   

9.
A method for the preconcentration and speciation of chromium in seawater was developed. On-line preconcentration and determination were carried out by using inductively coupled plasma atomic emission spectrometry (ICP-AES) with dual mini-columns containing a chelating resin. In this system, Cr(III) was collected on the first column. The effluent containing residual chromium from the first column was collected on the second column after passing through a reduction-switching unit, in which the reducing agent was introduced, or not, for the reduction of Cr(VI) to Cr(lII). Cr(VI) was determined as the difference between the concentration of pre-reduced Cr(VI) and Cr(III) in the effluent from the first column. The detection limits for Cr(III) and Cr(VI) were 0.04 and 0.09 microg l(-1), respectively.  相似文献   

10.
A new solid phase extraction (SPE) method has been developed for the speciation of Cr(III) and Cr(VI). This method is based on the adsorption of Cr(VI) on modified alumina‐coated magnetite nanoparticles (ACMNPs). Total chromium in different samples was determined as Cr(VI) after oxidation of Cr(III) to Cr(VI) using H2O2. The chromium concentration has been determined by flame atomic absorption spectrometric (FAAS) technique and amount of Cr(III) was calculated by substracting the concentration of Cr(VI) from total chromium concentration. The effect of parameters such as pH, amount of adsorbent, contact time, sample volume, eluent type, H2O2 concentration and cetyltrimethylammonium bromide (CTAB) concentration as modifier on the quantitative recovery of Cr(VI) were investigated. Under the optimal experimental conditions, the preconcentration factor, detection limit, linear range and relative standard deviation (RSD) of Cr(VI) were 140 (for 350 mL of sample solution), 0.083 ng mL?1, 0.1‐10.0 ng mL?1 and 4.6% (for 5.0 ng mL?1, n = 7), respectively. This method avoided the time‐consuming column‐passing process of loading large volume samples in traditional SPE through the rapid isolation of CTAB@ACMNPs with an adscititious magnet. The proposed method was successfully applied to the determination and speciation of chromium in different water and wastewater samples and suitable recoveries were obtained.  相似文献   

11.
Bağ H  Türker AR  Lale M  Tunçeli A 《Talanta》2000,51(5):895-902
A rapid, sensitive and accurate method for the separation, preconcentration and determination of Cr(III) and Cr(VI) in water samples is described. Chromium species can be separated by biosorption on Saccharomyces cerevisiae immobilized on sepiolite and determined by flame atomic absorption spectrometry (FAAS). The optimum conditions for separation and preconcentration (pH, bed height, flow rate and volume of sample solution) were evaluated. Recovery of the chromium was 96.3+/-0.2% at 95% confidence level. The breakthrough capacity of the adsorbent was found as 228 mumol g(-1) for Cr(III). The proposed method was applied successfully to the determination of Cr(III) and Cr(VI) in spiked and river water samples.  相似文献   

12.
Methods for the on-line chromatographic preconcentration of Cr(III) and Cr(VI) have been developed. Cr(VI) has been preconcentrated on an RP C18 silica based column with tetrabutylammonium-bromide (TBABr) as ion-pairing agent. Specially for Cr(III) a new and effective preconcentration technique based on the sorption of Cr(III)-ions in a C18 column in presence of KH-phthalate has been developed. The efficiency of sample introduction into the atomic emission spectrometer could be improved by hydraulic high pressure nebulization. For the detection of chromium the acetylene/N2O flame has been used as a powerful emission spectrometric source. Applying these steps the detection limit (3) could be improved to 25 pg/mL for Cr(III) and to 20 pg/mL for Cr(VI). The method has been applied for the chromium speciation in natural water samples.  相似文献   

13.
《Analytical letters》2012,45(4):809-822
Abstract

A new method based on cloud point extraction (CPE) separation and electrothermal vaporization inductively coupled plasma optical emission spectrometry (ETV‐ICP‐OES) detection was proposed for the determination of chromium species. Thenoyltrifluoracetone (TTA) was used as both an extractant for CPE of Cr(III) and a chemical modifier for ETV‐ICP‐OES determination. When the system temperature is higher than the cloud point temperature (CPT) of the selected surfactant, Triton X‐114, the complex of Cr(III) with TTA could enter the surfactant‐rich phase, whereas the Cr(VI) remained in aqueous solutions. Thus, an in situ separation of Cr(III) and Cr(VI) could be realized. The concentrated analyte was introduced into ETV‐ICP‐OES for determination of Cr(III) after proper disposal. Cr(VI) is reduced to Cr(III) prior to determining total Cr, and its assay is based on substracting of Cr(III) from total chromium. The main factors affecting cloud point extraction and the vaporization behavior of the analyte were investigated in detail. Under the optimized conditions, the limit of detection (LOD) for Cr(III) was 0.22 µg/L by preconcentration of a 10 mL sample solution, and the relative standard deviation (RSD) was 3.8% (CCr(III)=0.5 µg/mL, n=5). The proposed method was applied to the speciation of chromium in different water samples. In order to verify the accuracy of the method, a certified reference water sample was analyzed, and the results obtained were in good agreement with certified values.  相似文献   

14.
Attempt has been made to develop methodologies for preconcentration of chromium in the biodegradable polymer beads. The uptake behaviors for chromium have been studied with Ca-alginate (CA) and Fe-doped calcium alginate (Fe-CA) beads. The work also aims to study the differential attitude of CA and Fe-CA towards Cr(III) and Cr(VI) so that, depending on the oxidation state of chromium effluent, environmentally sustainable methodologies can be prescribed for removal of chromium. Radiotracer 51Cr has been chosen as precursor of stable chromium throughout the experiment. It was found that Fe-CA beads are suitable for removal of Cr(III) and Cr(VI) while CA beads can be used for the speciation and separation of Cr(III) and Cr(VI) at pH 5.  相似文献   

15.
Tunçeli A  Türker AR 《Talanta》2002,57(6):1199-1204
A simple and sensitive method for the speciation, separation and preconcentration of Cr(VI) and Cr(III) in tap water was developed. Cr(VI) has been separated from Cr(III) and preconcentrated as its 1,5-diphenylcarbazone complex by using a column containing Amberlite XAD-16 resin and determined by FAAS. Total chromium has also been determined by FAAS after conversion of Cr(III) to Cr(VI) by oxidation with KMnO4. Then, Cr(III) has been calculated by subtracting Cr(VI) from the total. The effect of acidity, amount of adsorbent, eluent type and flow rate of the sample solution on to the preconcentration procedure has been investigated. The retained Cr(VI) complex was eluated with 10 ml of 0.05 mol l−1 H2SO4 solution in methanol. The recovery of Cr(VI) was 99.7±0.7 at 95% confidence level. The highest preconcentration factor was 25 for a 250 ml sample volume. The detection limit of Cr(VI) was found as 45 μg l−1. The adsorption capacity of the resin was found as 0.4 mg g−1 for Cr (VI). The effect of interfering ions has also been studied. The proposed method was applied to tap water samples and chromium species have been determined with the relative error <3%.  相似文献   

16.
A novel method for preconcentration is described for chromium speciation at microgram per liter to sub-microgram per liter levels. It is based on selective complex formation of both Cr(VI) and Cr(III) followed by dispersive liquid–liquid microextraction and determination by microsample introduction-flame atomic absorption spectrometry. Effects influencing complex formation and extraction (such as pH, temperature, time, solvent, salinity and the amount of chelating agent) have been optimized. Enrichment factors up to 275 and 262 were obtained for Cr(VI) and total Cr, respectively. The calibration graph is linear from 0.3 to 20 µg L?1, and detection limits are 0.07 and 0.08 µg L?1 for Cr(VI) and total Cr, respectively. Relative standard deviations (RSDs) were obtained to be 2.0% for Cr(VI) and 2.6% for total Cr (n?=?7).  相似文献   

17.
 A method is described for the quantitative preconcentration and separation of trace chromium in water by adsorption on melamine-urea-formaldehyde resin. Cr(VI) is enriched from aqueous solutions on the resin. After elution the Cr(VI) is determined by FAAS. The capacity of the resin is maximal at ∼ pH 2. Total chromium can be determined by the method after oxidation of Cr(III) to Cr(VI) by hydrogen peroxide. The relative standard deviations (10 replicate analyses) for 10 mg/L levels of Cr(VI), Cr(III) and total chromium were 1.5, 3.5 and 2.8% respectively. The procedure has been applied to the determination and speciation of chromium in lake water, tap water and chromium-plating baths.  相似文献   

18.
Chromium speciation in solid matrices and regulation: a review   总被引:3,自引:0,他引:3  
In recent years, the extensive use of chromium in industrial processes has led to the promotion of several directives and recommendations by the European Union, that try to limit and regulate the presence of Cr(VI) in the environment and to protect industrial workers using chromium and end-users of manufactured products. As a consequence, new standard methods and analytical procedures have been published at the EU level for Cr(VI) determination in soil, sludge, sediment, and similar waste materials, workplace atmospheres, cement, packaging materials, industrially produced samples, and corrosion-protection layers on some components of vehicles and electrical and electronic equipment. The objective of this article is to summarize the different directives and recommendations and to critically review the currently existing standard methods and the methods published in the literature for chromium speciation in the above mentioned solid matrices, putting the emphasis on the different extraction procedures which have been developed for each matrix. Particular attention has been paid to Cr(III) and Cr(VI) inter-conversions that can occur during extraction and efforts to minimize these unwanted reactions. Although the use of NaOH-Na2CO3 solutions with hot plate extraction seems to be the more widespread procedure, species transformation can still occur and several studies suggest that speciated isotope-dilution mass spectrometry (SIDMS) could be a suitable tool for correction of these interconversions. Besides, recent studies have proved the role of Cr(III) in chromium toxicology. As a consequence, the authors suggest an update of standard methods in the near future.  相似文献   

19.
A method is introduced for recuperation of chromium(VI) in water samples by liquid-liquid extraction with tributylphosphate PO(C4H9O)3 (TBP) from acidic chloride media. The optimum conditions for quantitative extraction of Cr(VI) were evaluated by varying the experimental parameters, such as the shaking period, the pH of the aqueous phase, the hydrochloric acid concentration, the hydrogen and chloride ion concentrations, the extractant concentration and the ratio of aqueous-to-organic phase. The probable extracted species of hexavalent chromium in organic phase, deduced from log-log plots, were H2CrO4 in acid media in absence of chloride and HCrO3Cl in acidic chloride media. Chromium(VI) was found to be extracted with tributylphosphate from acidic chloride media according to the following reaction: HCrO4-(aq), + 2H+(aq) + Cl-(aq) + 2TBP(org) <==> [HCrO3Cl, 2TBP](org) + H2O(aq). Since the tributylphosphate (TBP) exhibited a high selectivity for chromium(VI), this method can be applicable to the extraction and the determination of chromium in both oxidation states [Cr(VI) and Cr(III)] in water samples.  相似文献   

20.
Groundwater samples collected from a tannery contaminated area were analyzed for chromium species with the objective of investigating the interference of Cr(III)-organic complexes in the determination of Cr(VI) using APDC–MIBK extraction procedure. The contribution of Cr(III), Cr(VI) and Cr(III)-organic complexes towards total chromium ranged between 2 and 61%, 27 and 86%, and, 6 and 23%, respectively. The Cr(III)-organic complexes were not extractable by APDC–MIBK, however, HNO3 digestion released the organic bound Cr(III). Interference of organic bound Cr(III) in Cr(VI) determination due to MIBK soluble Cr(III) was not observed. Significant difference between total dissolved chromium determined after appropriate digestion procedure, and the sum of dissolved Cr(III) and Cr(VI) determined indicates the presence of the Cr(III)-organic complexes. MIBK extraction of samples without APDC is an useful way to check the extractability of organic bound Cr(III). The presence of soluble Cr(III)-organic complexes thus add complexity to chromium speciation analysis by APDC–MIBK procedure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号