共查询到20条相似文献,搜索用时 62 毫秒
1.
可见光光谱检测赣南脐橙糖度的研究 总被引:7,自引:1,他引:7
利用透射光谱测定法获取赣南脐橙的可见光光谱(400~800 nm), 采用多种校正算法, 选取不同的波段范围对透射光谱进行有效信息提取和分析,对比研究了不同因子数时不同校正方法进行糖度快速检测的影响,确定了最佳参比、最佳的波段范围、最佳光谱处理方法和用于快速检测分析的最佳校正方法。实验结果表明: 偏最小二乘法校正模型的预测精度在450~770 nm波段范围内,因子数为7时其糖度的预测精度最好,其预测集的相关系数达到了0.857, 预测标准偏差为0.562。 相似文献
2.
砂梨糖度近红外光谱波段遗传算法优化 总被引:6,自引:0,他引:6
遗传算法不受搜索空间限制性假设的约束,利用简单的编码技术和繁殖机制来解决复杂近红外光谱数据的优化问题。文章采用遗传算法的波段选择法(R-SGA)对砂梨近红外光谱进行了波段优化,得到丰水、圆黄、黄金三种梨的R-SGA最佳因子数分别为10, 12和16,并分别建立了单一品种GA-PLS模型;丰水梨和黄金梨的GA-PLS模型精度高于全谱PLS模型,其模型的RMSEP分别为0.608/0.632和0.524/0.540;圆黄梨GA-PLS模型精度(RMSEP=0.610)与全谱PLS模型(RMSEP=0.595)相当。经波段优化分析表明,使用552个数据点建立多品种砂梨混合模型,具有较高稳健性和预测性(RMSEC=0.627,RMSEP=0.641)。结果表明:基于遗传算法进行波段优化可以提高砂梨糖度模型精度,提高建模效率,同时说明建立多品种砂梨糖度通用模型是可行的。 相似文献
3.
近红外漫反射光谱检测赣南脐橙可溶性固形物的研究 总被引:3,自引:1,他引:3
研究了应用可见-近红外漫反射光谱技术快速检测赣南脐橙可溶性固形物的方法。以40个赣南脐橙为标准样本,利用漫反射光谱测定法获取完整赣南脐橙的可见-近红外光光谱(350~2 500 nm),采用多种光谱校正算法,选取不同的光谱波段范围对水果样本的漫反射二阶光谱进行有效信息的提取和分析,并结合偏最小二乘法和主成分回归等定量校正方法,建立了赣南脐橙可溶性固形物的定量数学模型。实验结果为: 在361~2 488 nm波段范围内,偏最小二乘法校正模型的预测精度最好,校正模型的相关系数为0.929,校正标准偏差和预测标准偏差分别为0.517,0.592,其预测集样本的预测值与真实值的相关系数为0.791。实验结果表明:应用近红外漫反射技术对赣南脐橙可溶性固形物的快速无损检测具有可行性。 相似文献
4.
大白桃糖度的近红外漫反射光谱无损检测试验研究 总被引:10,自引:4,他引:10
该研究应用近红外(near infrared, NIR)漫反射光谱定量分析技术开展了金华大白桃的糖度检测试验研究。用偏最小二乘回归(partial least square regression, PLSR)方法在800~2 500 nm光谱范围建模,通过比较果汁和不同部位果肉所对应的相关模型的预测结果发现:用水果3个部位(顶部、中部、底部)共9个检测点的果肉平均光谱和糖度平均值建立的模型的结果比果汁或单独某个部位果肉(3个检测点)所建立的模型的结果要好。在此基础上,分析了光谱微分和散射校正预处理对建模结果的影响,结果显示微分光谱建立的模型不如原始光谱建立的模型的结果好,光谱的散射校正处理(用多元散射校正MSC和标准正态变量变换SNV两种方法)有助于提高模型的预测性能。最终建立桃子果肉平均光谱经MSC和SNV散射校正后与糖度的相关模型,MSC和SNV对建模结果的影响基本一致,MSC-PLSR和SNV-PLSR模型的相关系数Rcal和交互验证相关系数Rcross-v分别为0.997和0.939。该研究表明近红外光谱检测技术可用于金华大白桃糖度的定量分析。 相似文献
5.
应用近红外光谱技术快速检测果醋糖度 总被引:7,自引:0,他引:7
为了对果醋糖度值进行快速准确检测,应用近红外光谱技术并结合最小二乘支持向量机分析方法建立了果醋糖度检测模型.应用近红外透射光谱获取五种类型共计300份果醋样本的光谱透射曲线,利用主成分分析方法对原始光谱数据进行降维处理,根据主成分的累计贡献率选取6个主成分.选取的主成分即作为光谱优化特征子集以替代原来复杂的光谱数据.随后将300份果醋样本数据随机分为定标集和预测集,利用最小二乘支持向量机在225个定标集样本数据基础上建立起果醋糖度预测模型,应用此模型对75个预测集样本进行糖度预测.根据预测均方根误差(RMSEP)和预测结果的相关系数(r)对预测模型进行评价,利用此模型得到的样本糖度预测值r=0.993 9,RMSEP=0.363,均达到了较好的预测效果. 相似文献
6.
糖度(SSC)是苹果内部品质主要评价指标之一,近红外光谱技术是预测苹果SSC的首选技术,优化近红外光谱采集装置的参数,可以提升模型的性能。采用本课题组自主研发的动态在线设备采集苹果的近红外光谱(350~1 150 nm),研究不同参数条件下(运动速度、积分时间和光照强度)对近红外光谱预测苹果糖度模型的影响,优化动态在线装置的参数。210个红富士苹果被分为两批,第一批90个苹果样品,经过Kennard-Stone算法(K-S)算法分为建模集和预测集,用于研究不同运动速度、不同积分时间对苹果SSC含量在线预测模型的影响。在0.3和0.5 m·s-1两种运动速度下,使用多元散射校正(MSC)、小波变换(WT)、标准正态变量变换(SNV)对采集到的光谱进行预处理,对不同移动速度的光谱构建糖度的偏最小二乘回归模型(PLS),结果表明:装置的运动速度为0.5 m·s-1所建立的预测模型性能较优,在四种不同积分时间中,积分时间为120 ms时,经SNV预处理所建立的模型性能最优,其预测集的相关系数和均方根误差分别为0.968和0.331。第二批苹果120个... 相似文献
7.
田间黄花梨糖度的可见/近红外光谱检测方法 总被引:1,自引:0,他引:1
提出了一种可克服背景光对田间光谱测量影响的方法。采集田间水果光谱时,环境背景光的干扰强,难以获取样品有效光谱信息。在田间采用套袋方式遮挡现场光线能得到较理想的结果,但检测效率低,仪器暗场校正和参考光谱校正等方法有利于减小模型误差,但不能有效消除环境光照的干扰。通过在测量探头前加装快门,打开快门时测得样品在仪器光源和背景光共同作用下的现场光谱,关闭快门时测得样品仅在现场环境光线作用下的背景光谱,将背景光谱从现场光谱中扣除进行背景光校正。利用偏最二乘法建立田间(背景光校正前、后)以及室内样品光谱建立黄花梨糖度预测模型,预测值与真实值的相关系数分别为0.1,0.69,0.92,均方根误差分别为0.89。Brix,0.42。Brix,0.27。Brix,预测集的RPD分别为0.79,1.69,2.58,结果表明实验所采用的背景光校正方法可有效减小田间环境光照对黄花梨可见/近红外光谱采集的影响,可用于田间水果的近红外光谱采集,有利于充分发挥可见/近红外光谱技术在果实采收前的田间管理、采收成熟度检测等方面的潜力。 相似文献
8.
葡萄浆果糖度可见/近红外光谱检测的研究 总被引:3,自引:1,他引:3
针对可见/近红外光谱与水果糖度存在非线性相关的特点,利用漫反射光谱测定方法获取了葡萄浆果的可见/近红外光谱,提出了应用偏最小二乘(PLS)结合人工神经网络(ANN)建立葡萄浆果糖度的预测模型,利用偏最小二乘法(PLS)对原始光谱数据进行处理,得出交叉检验的最佳主因子数为3,并将3个主因子的得分作为三层BP神经网络的输入。通过定标集样本对BP神经网络进行训练,用优化的BP神经网络模型对预测集样本进行预测。PLS-ANN模型对样本的预测模型检验参数r2为0.908,RMSEP为0.112,Bias为0.013,好于只使用PLS模型的预测模型检验参数r2为0.863,RMSEP为0.171, Bias为0.024。结果表明,利用近红外光谱技术无损检测葡萄浆果糖度等内部品质是可行的,为今后进一步分析建立浆果内部品质预测模型奠定了基础。 相似文献
9.
苹果酒发酵过程中糖度近红外光谱检测模型的建立 总被引:2,自引:0,他引:2
在苹果酒发酵过程中,由于糖度变化幅度很大且酒体基质始终处于动态变化之中,文章采用分阶段处理结合人工神经网络法对不同发酵阶段的糖度检测、监测近红外光谱模型的建立进行了探讨。不同建模方法的比较结果表明采用减去一条直线法预处理光谱,阶段I建模光谱范围选择7 502~6 472.1 cm-1,阶段Ⅱ建模光谱范围选择6 102~5 446.2 cm-1时,阶段I模型的R2为98.93%,RMSECV为4.42 g·L-1;阶段Ⅱ模型的R2为99.34%,RMSECV为1.21 g·L-1;进一步对模型进行验证和评价,结果表明阶段I模型验证集的RMSEP为4.07 g·L-1;阶段Ⅱ模型验证集的RMSEP为1.13 g·L-1。本研究结果表明利用近红外光谱法建立的模型具有良好的预测效果, 能满足苹果酒工业生产中检测、监测精度要求。 相似文献
10.
河套蜜瓜是我国西北河套地区独具特色的果品,一直深受消费者的喜爱。糖度(sugar content)是衡量蜜瓜品质和成熟度重要指标。采用Maya 2000pro便携式光谱仪和PR-101ɑ便携式数字折光仪获取“金红宝”蜜瓜光谱信息及糖度值,研究了不同特征波长提取方法:逐步多元线性回归(SMLR)、间隔偏最小二乘法(iPLS)、反向区间偏最小二乘法(biPLS)以及联合区间偏最小二乘法(siPLS))对蜜瓜样品模型精度和预测结果的影响。结果表明:采用biPLS特征波长提取方法将全波段光谱均匀分成20个子区间,PLS因子数为14,当剔除其中8个子区间,选择的波长变量数为218时,得到的biPLS模型最佳,对应的校正集和预测集的RMSE分别为0.996 1和1.18。采用biPLS光谱波长筛选方法可以有效地提取蜜瓜糖度的特征波长,提高建模预测能力,实现蜜瓜糖度的快速检测。 相似文献
11.
奥林达夏橙叶片锌含量可见近红外光谱监测模型研究 总被引:1,自引:0,他引:1
以奥林达夏橙叶片粉末干样为对象,利用化学分析与可见近红外光谱技术相结合的方法,通过样品原始光谱的二阶微分及消噪(Noise)处理,运用偏最小二乘法(PLS)与交叉验证方法建立的Zn含量数学模型,其中使用Zn含量特征光谱400~500nm和1201~1300nm的组合波段建模,具有较好的预测能力,校正建模和预测模型的相关系数分别为0.9975和0.9920,交互验证预测均方根误差为0.5868。因此,利用可见近红外光谱技术,运用PLS及交叉验证方法,建立叶片Zn含量与特征波段的光谱校正模型,能快速定量检测柑桔叶片Zn含量。 相似文献
12.
Gabriel Goetten de Lima Henrique Zavattieri Ruiz Mailson Matos Cristiane Vieira Helm Marcus Vinicius de Liz 《光谱学快报》2013,46(5):282-287
There is a commercial and beneficial interest of producing yerba mate leaves into different grades of caffeine. This work uses a handheld and bench near-infrared (NIR) spectroscopy to compare and predict, using partial least squares (PLS) regression, the amount of caffeine in yerba mate leaves. Standards of pure caffeine were compared, using high-performance liquid chromatography (HPLC), with extracts of yerba mate. The bench spectroscopy gave a strong confidence model of caffeine prediction, whereas the handheld related to a fair model. For first detection and initial separation of yerba mate in the field, the modeling proposed can be used to predict caffeine intensity. 相似文献
13.
Investigations were initiated to develop near infrared (NIR) techniques coupled with variables selection method to rapidly measure cotton content in blend fabrics of cotton and polyester. Multiplicative scatter correction (MSC), smooth, first derivative (1Der), second derivative (2Der) and their combination were employed to preprocess the spectra. Monte Carlo uninformative variables elimination (MCUVE), successive projections algorithm (SPA), and genetic algorithm (GA) were performed comparatively to choose characteristic variables associated with cotton content distributions. One hundred and thirty-five and fifty-nine samples were used to calibrate models and assess the performance of the models, respectively. Through comparing the performance of partial least squares (PLS) regression models with new samples, the optimal model of cotton content was obtained with spectral pretreatment method of 2 Der-Smooth-MSC and variables selection method of MCUVE-SPA-PLS. The correlation coefficient of prediction (rp) and root mean square errors of prediction (RMSEP) were 0.988% and 2.100%, respectively. The results suggest that NIR technique combining with variables selection method of MCUVE-SPA has significant potential to quantitatively analyze cotton content in blend fabrics of cotton and polyester; moreover, it could indicate the related spectral contributions. 相似文献
14.
牛肉化学成分的近红外光谱检测方法的研究 总被引:5,自引:0,他引:5
通过对整块牛肉和肉馅样品进行扫谱,测定其脂肪、蛋白和水分含量,采用国产 SupNIR-1000 近红外光谱仪,运用人工神经网络(ANN)分别建立肉馅和整块牛肉的脂肪、蛋白和水分的模型.肉馅样品的脂肪模型校正相关系数为0.971、预测相关系数为0.972;蛋白的校正相关系数为0.952、预测相关系数为0.949;水分的校... 相似文献
15.
氯化钠近红外光谱检测技术研究 总被引:1,自引:0,他引:1
氯化钠(NaCl)近红外光谱分析在生物医学上有着重要的意义。钠离子(Na+)是人体血液中电解质的主要成分,而电解质有助于维持身体的酸碱平衡。采用近红外光谱技术测量氯化钠浓度,在分析钠离子近红外光谱检测机理的基础上,选定波长建立了NaCl浓度线性回归预测模型,同时为了减小温度对水吸收的扰动,使用选定光谱区建立偏最小二乘(PLS)非线性回归模型。结果表明所建立的非线性校正模型决定系数(R2)=99.82%,交叉验证均方误差(RMSECV)=14.5,剩余预测偏差(RPD)=23.7。完全满足日常生化检测精度要求,该技术可以应用于医院实验室钠离子浓度定量分析。 相似文献
16.
近红外光谱检测蜂蜜中可溶性固形物含量和水分的应用研究 总被引:1,自引:0,他引:1
提出了一种利用近红外光谱技术定量分析蜂蜜中可溶性同形物含量(SSC)的新方法,同时对蜂蜜中的水分也进行了研究.在不同光谱范围内,通过对原始光谱的不同预处理,用偏最小二乘法分别建立了SSC和水分的近红外透反射光谱校正模型,所有模型都有高的的预测精度和水分的最优模型都为在全谱范围内,光谱预处理采用Norris平滑+一阶微分+多元信号校正,SSC模型的交互验证决定系数(RCV2)、交互验证误差均方根(RMSECV)、验证集决定系数(RP2)、验证误差均方根(RMSEP).SSC模型分别为0.998 6,0.190,0.998 5和0.127,水分模型分别为0.998 4,0.187.0.998 6和0.125.近红外光谱能实现蜂蜜中SSC和水分的准确测定.水分模型预测结果略好于相关文献的报道. 相似文献
17.
近红外光谱用于杉木木材强度分等的研究 总被引:3,自引:0,他引:3
利用近红外光谱技术对木材强度分等进行了研究.选择 1000~1400 nm波段,结合偏最小二乘法,在木材强度和近红外光谱数据间建立了校正模型,校正模型的相关系数(r)为0.89,校正标准误差(SEC)为6.30 MPa.利用校正模型对35个未知样品的强度进行预测,根据近红外预测值和实测值分别对木材样品进行分等,A级预测... 相似文献
18.
目前红外测温方法难以消除复杂环境下外来辐射的干扰,导致测温精度低,设计了一种高精度的红外测温系统。该系统提出了由宽带滤光片和三级干涉滤光器结合的滤光方法,根据该方法对高温物体发出的近红外光谱进行滤光,将高温背景光和环境干扰光滤掉,得到两个单色光谱,经红外探测器接收获得其辐射功率比,通过计算得出物体温度。该系统透过的单色光谱带宽仅有1nm,将透射光谱以外的背景光辐射和环境光源辐射抑制达8个数量级,降低了因被测对象周围环境升温引起的测温误差,提高测温系统的精度。最后通过实验验证了该测温系统的可行性,精度达0.2%。 相似文献
19.
涩柿可溶性单宁的可见/近红外漫反射光谱无损检测研究 总被引:1,自引:0,他引:1
旨在建立可见/近红外漫反射光谱与涩柿内部可溶性单宁之间的关系,以评价可见/近红外漫反射光谱在测量涩柿内部指标可溶性单宁的应用价值.在可见/近红外光谱区域(570~1848 nm),实验对比分析了不同数学建模算法、不同导数处理方法和不同散射及标准化处理的涩柿可溶性单宁定标模型.结果表明,应用改进偏最小二乘回归算法、一阶导处理和去散射处理所建涩柿可溶性单宁定标模型的预测性能较优,其定标交互验证相关系数(Rcv)和预测相关系数(Rp2)分别为0.722 7和0.678 5,定标交互验证均方根误差(RMSECV)和预测均方根误差(RMSEP)分别为0.148 4和0.176 3.研究表明,可见/近红外漫反射光谱对涩柿可溶性单宁的快速无损检测具有一定的可行性,但模型精度有待提高. 相似文献
20.
色氨酸是人类一种必需氨基酸,也是稻米中一种重要的限制性氨基酸。从4年份1256份材料中选择出272份有代表性的样品,采用碱水解-分光光度法测定了其色氨酸含量。比较不同定标方法的预测结果发现,运用改良的偏最小二乘法(modified partial least square,MPLS)的全局(Global)定标方法和局部(Lo-cal)飞速定标方法的预测效果较佳,基于精米粉光谱建立的方程的预测标准误差均为0.007%,外部验证决定系数分别为87.1%和87.4%,可用于定量分析;而基于糙米光谱建立的定标方程的预测效果略差,但仍具有良好的预测能力。研究结果表明,近红外光谱技术可作为水稻育种中间材料的快速筛选和食品工业中稻米原料的品质监控手段。 相似文献