首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The mechanics of granular and porous media is considered in the light of the modern theories of structured continuum. The basic laws of motion are presented and several constitutive relations are derived. The special case of elastic porous media is considered in detail and the basic field equations are derived and the possible application of the results to soil dynamics is pointed out. The theory of the flow of granular media is also considered and basic equations of motion are derived where the results of Goodman and Cowin are recovered. The viscoplastic flow of porous media is studied and the possible application to soil mechanics is also discussed.  相似文献   

2.
In accordance with the Kirchhoff analogy, the equilibrium equations of an elastic thread on a plane are equivalent to the equations of motion of a simple pendulum. This analogy is generalized to the case when the thread is situated on a smooth curved surface. The equilibrium equations for the threads in the general case and in the particular cases of flat, cylindrical, and spherical surfaces are derived. For these surfaces the Kirchhoff analogy is generalized to the case of a simple pendulum in an additional force field. There are also considered the electromagnetic and nonholonomic analogies for the equilibrium equations of an elastic thread.  相似文献   

3.
4.
Summary The longitudinal propagation and reflection of a plane electromagnetic wave in a horizontally stratified magneto-ionic medium is considered. In this case Maxwell's equations reduce to two uncoupled ordinary second-order differential equations, describing the propagation of two elliptically polarized plane waves. The electron density of the medium is assumed to vary with the vertical Cartesian coordinatez according to the Epstein law. Rigorous solutions of the relevant differential equations can be obtained either in the form of hypergeometric functions or in the form of an integral representation. The reflection coefficients of both waves are then expressed in terms of gamma functions. The following quantities are considered in detail in their dependence on the parameters involved: the modulus of the reflection coefficient, the phase delay time and the group delay time. Some numerical results are given.  相似文献   

5.
The propagation of long weakly nonlinear waves in an atmospheric waveguide is considered. A model system of Kadomtsev-Petviashvili equations [1], which describes the propagation of such waves, is derived. In the case of one excited wave mode the system of model equations goes over into the Kadomtsev-Petviashvili equation, in which, however, the variables x and t are interchanged. The reasons for this are clarified. In the two-dimensional case an approximate solution of the model equations is constructed, and steady nonlinear waves and their interaction in a collision are considered. The results of a numerical verification of the stability of the approximate steady solutions and of the solution to the problem of decay of the wave into quasisolitons are given.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 151–157, May–June, 1988.  相似文献   

6.
The solution to certain second order hyperbolic differential equations with weak non-linearities is found by using the Krylov Bogoliubov-Mitropolskii method. Both autonomous and non-autonomous equations are considered, and in the latter case, both the non-resonant and resonant problems are solved. The general methods are applied to the case of the longitudinal vibrations of a rod in which non-linear elastic behavior, nonlinear viscoelastic behavior, and viscous damping occur.  相似文献   

7.
The flow of a micropolar fluid through a porous channel with expanding or contracting walls of different permeabilities is investigated. Two cases are considered, in which opposing walls undergo either uniform or non-uniform motion. In the first case,the homotopy analysis method (HAM) is used. to obtain the expressions for the velocity and micro-rotation fields. Graphs are sketched for some parameters. The results show that the expansion ratio and the different permeabilities have important effects on the dynamic characteristics of the fluid. Following Xu's model, in the second case which is more general, the wall expansion ratio varies with time. Under this assumption, the governing equations are transformed into nonlinear partial differential equations that can also be solved analytically by the HAM. In the process, both algebraic and exponential models are considered to describe the evolution of α(t) from the initial state α0 to the final state α1. As a result, the time-dependent solutions are found to approach the steady state very rapidly. The results show that the time-dependent variation of the wall expansion ratio can be ignored because of its limited effects.  相似文献   

8.
Non-linear free and forced vibrations of doubly curved isotropic shallow shells are investigated via multi-modal Galerkin discretization and the method of multiple scales. Donnell’s non-linear shallow shell theory is used and it is assumed that the shell is simply supported with movable edges. By deriving two different forms of the stress function, the equations of motion are reduced to a system of infinite non-linear ordinary differential equations with quadratic and cubic non-linearities. A quadratic relation between the excitation and the fundamental frequency is considered and it is shown that, although in case of hardening non-linearities the results resemble those found via numerical integration or continuation softwares, in case of softening non-linearity the solution breaks down as the amplitude becomes larger than the thickness. Results reveal that, expressing the relation between the excitation and fundamental frequency in this form, which was considered by many researchers as a useful tool in analyzing strong non-linear oscillators, yields in spurious results when the non-linearity becomes of softening type.  相似文献   

9.
Inverse solutions of the equations of motion of an incompressible second grade or order fluid are obtained by assuming certain forms for the stream functions a priori. The equations considered are in plane polar coordinates, axisymmetric polar coordinates and in axisymmetric spherical polar coordinates. Expressions for stream lines, veiocity components and pressure distributions are given explicitly, in each case, and are compared with the corresponding results of a viscous fluid.  相似文献   

10.
The paper presents a method of modeling dynamics of multibody systems with open and closed kinematic chains. The joint coordinates and homogeneous transformations are applied in order to formulate the equations of motion of a rigid body. In this method, constraint equations are introduced only in the case when closed subchains are considered or when the joint reactions have to be calculated. This allows the number of generalized coordinates in the system to be reduced in comparison to the case when absolute coordinates are applied. It is shown how the method can be applied to modeling of vehicle dynamics. The calculation results are compared with those obtained when the ADAMS/Car package is used. Experimental verification has been performed and is reported in the paper, as well. In both cases, a good correspondence of results has been achieved. Final remarks concerning advantages and disadvantages of the method are formulated at the end of the paper.  相似文献   

11.
非线性压电效应下压电层合板的弯曲   总被引:2,自引:1,他引:2  
考虑非线性压电效应,即电致弹性和电致伸缩效应情况下压电层合板的弯曲。从非线性压电方程和几何方程导出了压电层合板合应力、合力矩与应变之间的广义本构关系,这些关系关于电场是非线性的。利用Ritz法和双傅立叶级数得到四边简支对称压电层合板在高电场作用下的非线性解并进行计算。结果表明,只考虑线性压电效应只能适应于作用电场较低或基础层的刚度比压电层的刚度要大得多的情况。  相似文献   

12.
Using the general methods of non-equilibrium thermodynamics, a theory for anisotropic magnetizable media in which magnetic relaxation phenomena occur is formulated. In this paper, some results are revised, some others are new. First, a critical revision is given in the case where it is assumed that n microscopic phenomena give rise to magnetic relaxation, and the contributions of these phenomena to the macroscopic magnetization are introduced as internal variables in the Gibbs relation. Phenomenological equations and linear state equations are formulated, and magnetic relaxation equations generalizing Snoek equation are obtained. Then, new results are derived in the special case where all cross-effects are neglected, except for possible effects among the different types of magnetic relaxation phenomena, and by direct computations, generalized Snoek equations are worked out when the magnetization axial vector is additively composed of two irreversible parts, and in the case of anisotropic Snoek media and anisotropic De Groot–Mazur media. Also, particular results are presented and reviewed in the cases where the considered media have symmetry properties, under orthogonal transformations, which are i) invariant with respect to all the rotations of the frame of axes; ii) invariant with respect to all the rotations and inversions of the frame of axes.  相似文献   

13.
We study the impact of the convective terms on the global solvability or finite time blow up of solutions of dissipative PDEs. We consider the model examples of 1D Burger’s type equations, convective Cahn–Hilliard equation, generalized Kuramoto–Sivashinsky equation and KdV type equations. The following common scenario is established: adding sufficiently strong (in comparison with the destabilizing nonlinearity) convective terms to equation prevents the solutions from blowing up in a finite time and makes the considered system globally well-posed and dissipative and for weak enough convective terms the finite time blow up may occur similar to the case, when the equation does not involve convective term. This kind of result has been previously known for the case of Burger’s type equations and has been strongly based on maximum principle. In contrast to this, our results are based on the weighted energy estimates which do not require the maximum principle for the considered problem.  相似文献   

14.
In this paper, aeroelastic modeling of aircraft wings with variations in sweep angle, taper ratio, and variable pre-twist angle along the span is considered. The wing structure is modeled as a classical beam with torsion and bending flexibility. The governing equations are derived based on Hamilton’s principle. Moreover, Peters’ finite state aerodynamic model which is modified to take into account the effects of the wing finite-span, the wing sweep angle, and the wing pre-twist angle, is used to simulate the aerodynamic loads on the wing. The coupled partially differential equations are discretized to a set of ordinary differential equations using Galerkin’s approach. By solving these equations the aeroelastic instability conditions are derived. The results are compared with some experimental and analytical results of previous published papers and good agreement is attained. Effects of the wing sweep angle, taper ratio, bending to torsional rigidity, and pre-twist angle on the flutter boundary in several cases are studied. Results show that these geometrical and physical parameters have considerable effects on the wing flutter boundary.  相似文献   

15.
When fluctuating temperature field is considered to be super imposed on a general field of eddy turbulence, the early period decay phenomena in regard to velocity, temperature and velocity-temperature are guided by three dynamical equations that are obtained here in a straightforward manner. The equations so obtained are simplified for the case of homogeneous turbulence and subsequently for the case of homogeneous and isotropic turbulence.  相似文献   

16.
In the case of fluid with a power-law temperature dependence of the density in the boundary layer an exact solution of the equations of motion is found for a heated laminar vertical jet (convective plume). The case of a linear heat source is considered. The exact solution is compared with the results of numerical solution of the problem.  相似文献   

17.
A mathematical model of the vortex motion of an ideal two-layer fluid in a narrow straight channel is considered. The fluid motion in the Eulerian-Lagrangian coordinate system is described by quasilinear integrodifferential equations. Transformations of a set of the equations of motion which make it possible to apply the general method of studying integrodifferential equations of shallow-water theory, which is based on the generalization of the concepts of characteristics and the hyperbolicity for systems with operator functionals, are found. A characteristic equation is derived and analyzed. The necessary hyperbolicity conditions for a set of equations of motion of flows with a monotone-in-depth velocity profile are formulated. It is shown that the problem of sufficient hyperbolicity conditions is equivalent to the solution of a certain singular integral equation. In addition, the case of a strong jump in density (a heavy fluid in the lower layer and a quite lightweight fluid in the upper layer) is considered. A modeling that results in simplification of the system of equations of motion with its physical meaning preserved is carried out. For this system, the necessary and sufficient hyperbolicity conditions are given. Novosibirsk State University, Novosibirsk 630090. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 40, No. 3, pp. 68–80, May–June, 1999.  相似文献   

18.
The case of impact on a thin annular fluid layer with a gas-filled cavity is considered. The solution of the problem reduces to integrating a system of two first-order ordinary differential equations. The equations are analyzed qualitatively, and some exact solutions are found. Cases are noted of pulsation of the cavity, and the influence of counter-pressure and viscosity is investigated. The experimental results obtained are in agreement with the numerical computations carried out herein.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 6, pp. 98–106, November–December, 1970.The authors are grateful to A. M. Kogan and L. V. Mostovaya for performing the computations.  相似文献   

19.
The ‘dam-break’ initial behaviour of an inviscid gravity current which is released from a lock and then propagates over a horizontal boundary at the base of a stratified ambient fluid is considered. Analytical and finite-difference solutions of the one-layer shallow-water equations are developed and compared for the linear stratification in a rectangular channel case, and corroborated by numerical solutions of the full two-dimensional Navier–Stokes equations. Extensions of the shallow-water solution to non-linear stratification, release from an elliptical reservoir, and axisymmetric geometry are also presented. The results indicate that the shallow-water formulation captures well the essential features of the motion, which are qualitatively similar to the non-stratified case, but with details modified by the stratification; in particular, the forward propagation of the head and the backward spread of the depression wave are reduced when the stratification increases.  相似文献   

20.
The derivation of plate equations for a plate consisting of two layers, one anisotropic elastic and one piezoelectric, is considered. Power series expansions in the thickness coordinate for the displacement components and the electric potential lead to recursion relations among the expansion functions. Using these in the boundary and interface conditions, a set of equations are obtained for some of the lowest-order expansion functions. This set is reduced to six equations corresponding to the symmetric (in-plane) and antisymmetric (bending) motions of the elastic layer. These equations are given to linear (for the symmetric equations) or quadratic (for the antisymmetric equations) order in the thickness. It is noted that it is, in principle, possible to go to any order, and that it is believed that the corresponding equations are asymptotically correct. A few numerical results for guided waves along the plate and a 1D actuator case illustrate the accuracy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号