首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
简介了结构松弛的主要特点及其唯象Tool-Narayanaswamy-Moynihan模型的建立,产用此模型对无机玻璃在不同老化时间及不同老化温度下的结构松弛行为进行了模拟,得到了4个可调参数X,β,Δh和A,其中β,Δh和A不随老化温度及老化时间而发生变化,X则随老化时间的增加而增大,随老化温度的降低而降低。  相似文献   

2.
Al掺杂对Li(AlyCo1-y)O2材料结构的影响   总被引:9,自引:0,他引:9  
报道了在800℃烧结制备的新型锂二次电池正极材料Li(AlyCo1-y)O2(y=0,0.11)的X射线衍射结果和由此而揭示的结构演化过程.研究表明,y≤0.5时,材料呈单相,0.6≤y≤0.9时,材料呈两相[Li(AlyCo1-y)O2,C-LiAlO2]共存状态,y=1时,材料又呈单相,为LiAlO2相.Li(AlyCo1-y)O2材料中y值的上限即Al的最大固溶度在0.5左右.在单相区(y≤0.5),随着Al掺杂的增多,Li(AlyCo1-y)O2材料晶格结构参数发生变化,a轴缩短,c轴变长,c/a比基本呈线性增加,材料的层状属性更加明显.  相似文献   

3.
Li3V2(PO4)3电极过程及其锂离子脱嵌动力学研究(Ⅰ)   总被引:4,自引:0,他引:4  
采用溶胶凝胶法合成了Nasicon化合物Li3V2(PO4)3,采用X射线衍射(XRD)对产品进行了物相分析.采用充放电测试,循环伏安(CV)研究了化合物的电化学性能和锂离子的脱嵌过程,计算出Li+在固相中的扩散系数(10-8 cm2·s-1);采用交流阻抗测试(EIS)研究了Li3V2(PO4)3的电极过程;对两种类型的阻抗图谱提出不同等效电路模型并对结果进行了拟合;研究了Li3V2(PO4)3电极过程动力学以及新鲜电极界面在充放电过程中的变化特性.  相似文献   

4.
C(膜)/Si(SiO2 )(纳米微粒)/C(膜)热处理的形态及结构分析   总被引:1,自引:0,他引:1  
用直流辉光溅射+真空镀膜法制备了一种新型结构的硅基纳米发光材料- C(膜)/Si(SiO2)(纳米微粒)/C(膜)夹层膜,并对其进行了退火处理.用TEM、 SEM、 XRD和XPS对其进行了形态结构分析.TEM观察表明: Si(SiO2)纳米微粒基本呈球形,粒径在30 nm左右.SEM观察表明: 夹层膜样品总厚度约为50 μm,膜表面比较平整、致密.400℃退火后,样品表面变得凹凸不平,出现孔状结构; 650℃退火后,样品表面最平整、致密且颗粒均匀.XRD分析表明:制备出的夹层膜主要由SiO2和Si组成,在C原子的还原作用和氧气的氧化作用的共同作用下, SiO2和Si的含量随加热温度的升高而呈现交替变化: 400℃时, C的还原作用占主导地位, SiO2几乎全部被还原成了Si,此时Si含量最高; 400~650℃时,氧化作用占主导地位, Si又被氧化成SiO2, Si含量降低, SiO2含量逐渐上升,在650℃达到最高.XPS分析表明: 在加热过程中, C原子逐渐扩散进入Si(SiO2)微粒层,在650℃与Si反应生成了新的SiC.  相似文献   

5.
C(膜)/Si(SiO2)(纳米微粒)/C(膜) 的光致发光性质研究   总被引:1,自引:0,他引:1       下载免费PDF全文
用直流辉光溅射法结合真空镀膜法制备出了一种\"多层三明治结构\"的光致发光材料-C(膜)/Si(SiO2)(纳米微粒)/C(膜)夹层膜,然后分别在400、650和750℃退火1 h.在波长为250 nm的紫外光激发下,刚制备出来未经退火处理的样品具有一个在398nm(3.12 eV)处的紫光宽带PL1峰.在650℃退火后,又出现了一个在360nm(3.44eV)附近的PL2峰.PL1和PL2峰形状和峰位与退火温度和激发波长无关,但强度却与退火温度和激发波长密切相关.结合形态结构分析可知,紫光PL1峰可用量子限制-发光中心(QC-LCs)模型进行解释:即光激发发生在8iO2微粒内部,而光发射源于SiO2与Si界面上的缺陷中心.紫外荧光PL2峰则源自SiC内部的电子-空穴复合发光.  相似文献   

6.
《化学通报》2002,65(12):849-853
研究了壳聚糖对Fe2+的吸附行为,并进行了条件优化,得到了较为理想的合成产物.通过红外光谱和紫外光谱进行了表征,进而用化学分析、元素分析确定了配合物的组成,并利用TG-DSC分析,采用常用的22种机理函数,对非等温动力学数据进行了线性回归拟合处理,求得了配合物主要分解阶段热动力学最可机理函数和动力学参数(E和A).  相似文献   

7.
采用第一性原理方法研究了H2分子在两种Li3N(100)晶面的表面吸附情况. 通过研究Li3N(100)/H2体系的吸附位置、吸附能和电子结构, 发现H2分子在Li3N(100)晶面主要是化学吸附, 但也可以发生物理吸附. 在表面终止原子为Li和N的Li3N(100)表面, 吸附的最稳定结构中H2分子被解离, 最终H原子分别趋于两个N原子的顶位, 形成两个NH基, 吸附能为5.157 eV, 属于强化学吸附|此时H2分子与Li3N(100)表面的相互作用主要源于H1s轨道与Li3N表层N原子的2s, 2p轨道重叠杂化的贡献, 且N-H键为共价键. 在表面终止原子为Li的Li3N(100)表面, 吸附的最稳定结构中H2分子也被解离, H原子趋于穴位, 吸附能为2.464 eV, 也属于强化学吸附|此时Li和H之间为较强的离子键相互作用.  相似文献   

8.
根据Ru(bipy)_3~(2 )/Ru(phen)_3~(2 )-C_2O_4~(2-)-Ce~Ⅳ(bipy=2,2'-联吡啶,phen=1,10-邻菲咯琳)化学发光反应建立了该化学发光反应的动力学模型,根据模型计算出该反应的发光强度-反应时间曲线上升及下降阶段的反应速率常数、发光强度最大值及其出现的时间等.发光强度最大值及发光强度-反应时间曲线下的面积均可用于定量分析.  相似文献   

9.
采用原子层沉积技术(ALD)在不锈钢微通道管式反应器内壁沉积二氧化硅(SiO2)和二氧化钛(TiO2)薄膜, 以抑制碳氢燃料热裂解过程中由于金属催化作用导致的结焦. 使用石英晶体微天平(QCM)测得SiO2和TiO2薄膜的生长速率分别为0.15 nm/周期和0.11 nm/周期, 因此可以通过改变沉积周期数精确控制钝化层的厚度. 在结焦实验中, 当钝化膜层较薄时, 其抗积碳钝化作用较弱; 随着钝化薄膜厚度的增加, 其钝化作用逐渐增强, 微通道反应器的运行寿命显著延长. 实验表明, TiO2薄膜的抗积碳钝化性能普遍优于SiO2薄膜. 沉积周期数为1000的TiO2膜层具有最佳的抗积碳钝化效果, 能够使反应器的运行时间延长4~5倍.  相似文献   

10.
采用溶胶-凝胶法制备了PbF2·SiO2纳米晶玻璃陶瓷块体;利用TG-DSC和IR技术分析了干凝胶在热处理过程中有机基团的分解及内部原子键合方式的演变;结合XRD和TEM研究了凝胶玻璃中PbF2纳米晶粒的长大过程,并分析了Er3+掺杂的影响.结果表明,采用此方法制备的PbF2.SiO2纳米晶粒玻璃陶瓷具有较好的成形性,晶化温度在320℃左右;经480℃热处理,镶嵌在玻璃基体中的PbF2晶粒尺度约为10-25nm,材料透明性良好.在PbF2·SiO2系统中掺入少量的Er3+,将提高PbF2的晶化温度,降低玻璃陶瓷的显微硬度;掺杂可能对PbF2晶粒表面原子的活性起抑制作用,阻碍晶粒的表面迁移,使晶粒的生长速度明显降低.  相似文献   

11.
Binary potassium and rubidium silicate glasses were irradiated with high-energy electrons. The changes induced in the glasses were observed as a decay of alkali X-ray signals with time. The decay curves displayed incubation periods, connected with changes of the transport mechanism. The electron exposures were interrupted relative to the incubation periods, next the glasses were annealed to enable easier relaxations, and successively irradiated again to finish the decay curve. Relaxation, which depends on the point of the decay curve at which exposure is interrupted, is calculated for the glasses. Relaxation was found to depend strongly on the interruption point with regard to the incubation period. The longer irradiation causes worse recovery of the structure during annealing, especially if the irradiation lasts longer than the incubation time. The larger ions and lower concentration also inhibit relaxation.  相似文献   

12.
More Silicates with ?Stuffed Pyrgoms”?: CsKNaLi9{Li[SiO4]}4, CsKNa2Li8{Li[SiO4]}4, RbNa3Li8{Li[SiO4]}4 [1] and RbNaLi4{Li[SiO4]}2 [2] Single crystals of the new silicates CsKNaLi9{Li[SiO4]}4, CsKNa2Li8{Li[SiO4]}4, RbNa3Li8{Li[SiO4]}4 and RbNaLi4{Li[SiO4]}2 as well as powder (Rb-containing compounds only) were obtained for the first time. The samples were prepared by heating well ground mixtures of the binary oxides in Ni and Ag tubes, respectively. The structure determination was carried out by four-circle diffractometer data (MoKα radiation; Siemens AED 2): CsKNaLi9{Li[SiO4]}4: tetragonally prismatic crystals, light yellow; 726 I0(hkl), R = 4.4%, Rw = 2.8%; a = 1 102.0(6), c = 637.9(5) pm; Z = 2; space group I4/m; 2 CsO0.55 + Li4TlO4 + glas (560°C, 15 d). CsKNa2Li8{Li[SiO4]}4: tetragonally prismatic crystals, light yellow; 727 I0(hkl), R = 4.4%, Rw = 2.6%; a = 1 103.5(7), c = 637.7(4) pm; Z = 2; space group I4/m; 1.1 CsO0.61 + 1.1 KO0.55 + 1.4 NaO0.52 + 6.5 Li2O + 4 SiO2 (600°C, 60 d). RbNa3Li8{Li[SiO4]}4: tetragonally prismatic crystals, colourless; 600 I0(hkl), R = 2.3%, Rw = 2.0%; a = 1 092.08(6), c = 632.76(4) pm; Z = 2; space group I4/m; 4 RbO0.57 + 3 NaO0.52 + 6.5 Li2O + 4 SiO2 (650°C, 63 d). RbNaLi4{Li[SiO4]}2: monoclinic, ball-shaped, colourless; 1 224 I0(hkl), R = 3.1%, Rw = 3.1%; a = 1 573.10(13), b = 630.48(5), c = 781.25(8) pm, b = 90.566(8)°; Z = 4; space group C2/m; 1.1 RbO0.52 + 1.2 NaO0.45 + 5 Li2O + 4 SiO2 (700°C, 40 d).  相似文献   

13.
Ag colloid-containing coatings on soda lime glass and fused silica are prepared via the sol-gel process. To incorporate Ag+-ions in the coatings homogeneously, they are stabilized by a functionalised silane (aminosilane) and then mixed with the basic sol prepared from 3-glycidoxypropyl trimethoxysilane (GPTS) and tetraethoxysilane (TEOS). Crack-free and transparent coatings with a thickness of 0.5 to 1.2 m, are obtained by heat treatment between 120°C and 600°C. The Ag-colloid formation was monitored by UV-VIS spectroscopy as a function of temperature. The investigations reveal that the substrate has a deciding influence on the Ag-colloid formation caused by alkali diffusion from the substrate into the coating. High resolution transmission electron microscopy (HRTEM) investigations prove that poly-crystalline AgxOy-nanoparticles are formed during thermal densification in the coatings and that this change is accompanied by a vanishing of the yellow colour of the coatings. A post-heat treatment in a reducing atmosphere (90% N2, 10% H2) turns back the yellow colour and single-crystalline Ag-colloids can be detected by HRTEM. A suitable choice of the temperature and time conditions allows the control of the colloid size during heat treatment in a reducing atmosphere. For comparison, ion-exchange experiments have been carried out which showed that a spontaneous Ag-colloid formation was achieved in the soda lime substrate at 400°C. Since Ag containing SiO2-coatings remained colourless after thermal treatment between 400°C and 600°C in air, on soda lime substrates, a remarkable diffusion of Ag+ into the substrate was excluded.  相似文献   

14.
Li10Si2PbIIO10 = Li20[(SiO4)4(OPbO2PbO)] — The first ?mixed”? Silicate-Plumbate(II) Colourless crystals of Li10Si2PbO10 were obtained by heating a well-ground mixture of LiPb, Li2O2 and ?SiO2”? (deriving from Duran glas) in Ag-tubes (650°C; 60 d). The crystal structure was determined (four-circle diffractometer data, Mo? K, 1 474 Io(hkl), R = 4.2%, Rw = 2.8%, parameters see text). The silicate-plumbate crystallizes monoclinic (space group C2/m; I. T. No. 12) with a = 2985.1(4); b = 610.6(6); c = 512.8(1) pm, β = 99.70(9)° (four-circle data), Z = 4. Further the Madelung Part of Lattice Energy (MAPLE), Effective Coordination Numbers (ECoN), the Mean Fictive Ionic Radii (MEFIR) and the Charge Distribution (CHARDI) are being calculated.  相似文献   

15.
A New Oxogermanate: Li8GeO6 ? Li8O[GeO4] Transparent colourless single crystals of Li8GeO6(P63cm, a = 550.09(8), c = 1072.2(3) pm, Z = 2; 4-circle-diffractometer Siemens AED 2, MoKα; 326 Io(hkl), R = 2.4%, Rw = 2.0%), have been prepared. As by-product we always got colourless isometric single crystals of Li4GeO4. For the first time we could grow single crystals of Li8SiO6 of suitable size and quality. Our structure refinement confirms the assumed structure model [2]: Li8GeO6 and Li8SiO6 are isotypic with Li8CoO6[3] (Li8SiO6: a = 542.43(8), c = 1062.6(2) pm, Z = 2; 4-circle-diffractometer Siemens AED 2, MoKα; 306 Io(hkl), R = 3.6%, Rw= 3.0%). The known crystal structure of Li4GeO4 [4] is confirmed and refined (Cmcm, a = 776.6(2), b = 735.7(3), c = 604.9(2) pm, Z = 4; 4-circle-diffractometer Siemens AED 2, MoKα, 298 Io(hkl), R = 1.9%, Rw = 1.4%). The Madelung Part of Lattice Energy, MAPLE, and Effective coordination-Numbers, ECoN, these via Mean Fictive Ionic Radii, MEFIR, are calculated.  相似文献   

16.
The phase equilibria as well as the properties and crystal structures of the compounds formed in both Li2SO4-MgSO4 and Li2SO4-Li4SiO4 systems have been studied by means of x-ray diffraction technique (at high and room temperatures) as well as by the thermal analyses (DTA, DSC, TGA, etc.). In Li2SO4-MgSO4 system there exists a compound Mg4Li2(SO4)5 formed by peritectic reaction at 840°C and decomposed at 105°C into the Li2SO4-base solid solution and MgSO4 · Mg4Li2(SO4)5 and Li2SO4-base solid solution conduct an eutectic reaction at 663°C with the composition of eutectic point lying in 22 mol% MgSO4. The solubility of MgSO4 in Li2SO4 is a little smaller than 10 mol% while at the same time the Li2SO4 phase transition temperature decreases from 574 to 560°C On the other hand, no noticeable solid solubility of Li2SO4 in MgSO4 has been observed. The reaction is an endothermal one and its heat of formation is 2.57 kJ/mol. The activation energy of the reaction calculated by thermal peak displacement method at various heating rates is 173.5 kJ/mol (1.80 ev). The crystal Mg4Li2(SO4)5 belongs to orthorhombic system with lattice parameters at 180°C: a = 8.577, b=8.741, c= 11.918 Å. The space group seems to be either P222 or P mmm. Assuming that there are two formula units in a unit cell, the density calculated is then 2.20 g/cm3 very close to that of Li2SO4 or MgSO4. Meanwhile, in Li2SO4-Li4SiO4 system a new phase Li8-2x(SiO4)8-x(SO4)x is formed by peritectic reaction at 953°C with a range of composition x=0.96 ?0.58. The crystal belongs to ortho-rhombic system with lattice parameters at x=0.8: a = 5.002, b= 6.173 and c=10.608Å. The density observed is 2.31 g/cm3 and there are 2 formula units in an unit cell. It is shown from the measurements of piezoelectric and laser SHG coefficients of the crystal that the crystal posseses a symmetrical center with the space group belonging to P mmn. The lattice parameter c has a maximum at x=0.8. In the air Li8-2x(SiO4)2-x(SO4)x can absorb 7.6 wt% water vapour and other gases which can only be desorbed by heating it at a temperature above 350°C. Neither absorption nor desorbtion can change its crystal structure, a characteristic similar to that of zeolite molecular sieve. The dewater activation energy of Li8-2x(SiO4)2-x(SO4)x is 171.5 kJ/mol. Li8-2x(SiO4)2-x(SO4)x and Li4SO4 bring about an eutectic reaction at 823°C with its eutectic composition being 12 mol% Li4SiO4. No observable solubility of Li4SiO4 in Li3SO4 has been noticed. The solubility of Li2SO4 in Li4SiO4 is approximately equal to 5 mol%. With Li2SO4 being dissolved in, the phase transition temperature of Li4SiO4 is decreased. After being fused, the specimens Li3SO4-MgSO4 and Li2SO4-Li4SiO4 are cooled at a rate of 10°C/min, their metastable eutectic systems are resulted respectively.  相似文献   

17.
18.
用铜模吸铸法制备直径为4 mm的La55Al25Ni10Cu10大块金属玻璃非晶棒。采用差示扫描量热仪(DSC)研究了金属玻璃结构弛豫行为,并运用Stretched-Exponential弛豫方程对焓弛豫动力学进行描述。结果表明:La55Al25Ni10Cu10金属玻璃在玻璃转变温度Tg以下不同时间等温退火中会发生焓弛豫,用Stretched-Exponential弛豫方程能很好地描述焓弛豫动力学行为,得到Kohlrausch指数β=0.78,弛豫激活能E=60.8kJ.mol^-1。La55Al25Ni10Cu10金属玻璃形成液体的脆性指数为54,其玻璃形成液体属于强液体。  相似文献   

19.
Cadmium sulfide nanoparticles (approximately 5 nm), chemically capped using thioglycerol molecules, have been anchored onto silica particles (approximately 80 nm) functionalized with 3-aminopropyltrimethoxysilane. Transmission electron microscopy clearly showed that at a low concentration of cadmium sulfide, nanoparticles were discretely and more or less uniformly attached onto the silica particles. At a high concentration of cadmium sulfide nanoparticles, an approximately 6-nm-thick compact shell of cadmium sulfide was formed on the silica particles. In both cases the nanocrystalline nature of cadmium sulfide particles was preserved, as is evident from X-ray diffraction and optical absorption spectra.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号