首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Platinum phases of general formula [Pt(n-), M+, MX] can be electrogenerated from cathodic polarization in dry dimethylformamide containing a supporting electrolyte, MX. The reaction of these electrogenerated Pt phases as reducing agent with aryldiazonium salts was investigated for preparing controlled metal-organic interfaces and characterizing the reactivity of the "reduced platinum phases". In a two-step process, the "reduced platinum phase" locally reacts with aryldiazonium salts, leading to the attachment of aryl groups onto the metal surface in the previously modified areas. Detailed experiments using cyclic voltammetry, X-ray photoelectron spectroscopy (XPS), and in situ electrochemical atomic force microscopy (EC-AFM) were carried out to follow the reaction in solution with the example of NaI as supporting electrolyte (MX = NaI). These studies demonstrate the irreversible attachment of aryl groups onto the platinum electrode. Comparison between the direct electroreduction of aryldiazonium compounds (4-nitrophenyl- and 4-bromophenyldiazonium) on a platinum electrode and their reaction with [Pt2-, Na+, NaI] suggests that a similar general mechanism is responsible for the grafting. However in the second case, no applied potential is required to stimulate the binding thanks to the reductive properties of [Pt2-, Na+, NaI]. Competitive reduction of the organic layer and growth of the layer were observed and analyzed as a function of the injected charge used to initially produce [Pt2-, Na+, NaI]. Similar reactions are highly probable with other MX salts owing to the redox properties observed for this type of platinum phase ([Pt(n-), M+, MX]).  相似文献   

2.
Electrochemical reduction of aryldiazonium salts (in acetonitrile or acidic aqueous medium) on an iron or mild steel surface permits the strong bonding (which resists an ultrasonic cleaning) of aryl groups on these surfaces. Attachment of aryl groups was demonstrated by the combined used of electrochemistry, infrared spectroscopy and polarization modulation infrared reflection spectroscopy (PMIRRAS), Rutherford backscattering, X-ray photoelectron spectroscopy, and capacity measurements. The substituents of aryl groups, which can be widely varied, include NO2, I, COOH, and long alkyl chains. It is shown that the attachment of the aryl groups is to an iron and not to an oxygen atom and that the bond is covalent.  相似文献   

3.
Patterning of semiconductor surfaces is an area of intense interest, not only for technological applications, such as molecular electronics, sensing, cellular recognition, and others, but also for fundamental understanding of surface reactivity, general control over surface properties, and development of new surface reactivity. In this communication, we describe the use of self-assembling block copolymers to direct semiconductor surface chemistry in a spatially defined manner, on the nanoscale. The proof-of-principle class of reactions evaluated here is galvanic displacement, in which a metal ion, M+, is reduced to M0 by the semiconductor, including Si, Ge, InP, and GaAs. The block copolymer chosen has a polypyridine block which binds to the metal ions and brings them into close proximity with the surface, at which point they undergo reaction; the pattern of resulting surface chemistry, therefore, mirrors the nanoscale structure of the parent block copolymer. This chemistry has the added advantage of forming metal nanostructures that result in an alloy or intermetallic at the interface, leading to strongly bound metal nanoparticles that may have interesting electronic properties. This approach has been shown to be very general, functioning on a variety of semiconductor substrates for both silver and gold deposition, and is being extended to organic and inorganic reactions on a variety of conducting, semiconducting, and insulating substrates.  相似文献   

4.
5.
6.
马桂秋 《高分子科学》2012,30(3):423-435
The surface of polypropylene(iPP) is modified with glow discharge plasma of Ar,so that the modified surfaces of iPP films are obtained.The studies of scanning electron microscopy(SEM) show the surface etching pattern of iPP films. The chemical structures of iPP films are confirmed by X-ray photoelectron spectroscopy(XPS) and Fourier transform infrared(FTIR) spectroscopy.The wetting properties of modified surfaces of iPP films are characterized by contact angle, and the free energy of surfaces is calculated.The free radical of modification surfaces of iPP is measured by chemical method.The surfaces of iPP are achieved with Ar plasma treatment followed by grafting copolymerization with styrene(St) in St.The grafting polymer of St onto iPP is characterized by FTIR.The grafting rate is dependent on plasma exposure time and discharge voltage.The studies show that homopolymerization of St is undergone at the same time during the grafting-copolymerization of St onto iPP.  相似文献   

7.
The spontaneous reaction of diazonium salts on various substrates has been widely employed since it consists of a simple immersion of the substrate in the diazonium salt solution. As electrochemical processes involving the same diazonium salts, the spontaneous grafting is assumed to give covalently poly(phenylene)-like bonded films. Resistance to solvents and to ultrasonication is commonly accepted as indirect proof of the existence of a covalent bond. However, the most relevant attempts to demonstrate a metal-C interface bond have been obtained by an XPS investigation of spontaneously grafted films on copper. Similarly, our experiments give evidence of such a bond in spontaneously grafted films on nickel substrates in acetonitrile. In the case of gold substrates, the formation of a spontaneous film was unexpected but reported in the literature in parallel to our observations. Even if no interfacial bond was observed, formation of the films was explained by grafting of aryl cations or radicals on the surface arising from dediazoniation, the film growing later by azo coupling, radical addition, or cationic addition on the grafted phenyl layer. Nevertheless, none of these mechanisms fits our experimental results showing the presence of an Au-N bond. In this work, we present a fine spectroscopic analysis of the coatings obtained on gold and nickel substrates that allow us to propose a chemical structure of such films, in particular, their interface with the substrates. After testing the most probable mechanisms, we have concluded in favor of the involvement of two complementary mechanisms which are the direct reaction of diazonium salts with the gold surface that accounts for the observed Au-N interfacial bonds as well as the formation of aryl cations able to graft on the substrate through Au-C linkages.  相似文献   

8.
9.
The adsorption of phosphonate molecules onto mineral surfaces is of interest due to their use as scale inhibitors. Molecular modeling is an important tool that can aid the fundamental understanding of how these inhibitors operate. This paper presents an empirical molecular mechanics study of the adsorption of a series of straight chain phosphonate molecules onto barium sulfate. It has been found that inhibition can be predicted for this straight chain series of molecules, which differ by the number of phosphonate groups present as well as by the chain length. Even more importantly, the modeling results can predict which faces will be preferred, and this has been verified by scanning and transmission electron microscopy on the resultant barite particles. It has been found that, in general, lattice matching results in the lowest replacement energy for all of the organic molecules investigated. The agreement between the experiment and the model confirms that the dominant mechanism of interaction for the additives on barium sulfate is via the deprotonated phosphonate groups with the barium ions on the surface.  相似文献   

10.
The modification of silica nanoparticles with hexafluoropropylene oxide (HFPO) oligomers has been investigated. HFPO oligomers with two different average degrees of polymerization (DPn = 8 and 15) were first prepared by anionic ring-opening polymerization, deactivated by methanol, and in some cases postfunctionalized by aminopropyl(tri)ethoxysilane or allylamine. The "grafting onto" reactions of these oligomers were then carried out either on bare silica (reaction between a silanol surface and ethoxy-silanized HFPO) or on silica functionalized by amino groups (in an amidation reaction with methyl ester-ended HFPO) or mercapto groups (via the radical addition of allyl-functionalized HFPO). Hybrid nanoparticles thus obtained were characterized by solid-state (29)Si NMR and FTIR spectroscopies as well as elemental and thermogravimetric analyses. The results assessed a significant yield of covalent grafting of HFPO oligomers when performing the hydrolysis-condensation of ethoxylated HFPO on the bare silica surface, compared to the other two methods that merely led to physically adsorbed HFPO chains. Chemically grafted nanohybrids showed a high thermal stability (up to 400 °C) as well as a very low surface tension (typically 5 mN/m) compared to physisorbed complexes.  相似文献   

11.
We introduce a rapid, simple one-step procedure for the high-yield immobilization of cholesteryl-tetraethyleneglycol-modified oligonucleotides (chol-DNA) at hydrophobic sites made of SU-8 photoresist. Topographic structures of SU-8 were microfabricated on microscope glass coverslips sputtered with a Ti/Au layer. Upon application, chol-DNA adsorbed to the SU-8 structures from solution, leaving the surrounding gold surface free of chol-DNA. chol-DNA immobilization is complete within 15 min and yields a surface coverage in the range of 20-95 pmol/cm(2), which corresponds to a film density of 10(12)-10(13) molecules/cm(2). chol-DNA immobilization is stable and can be sustained despite rinsing, drying, dry storage for several hours, and rehydration of chips. Furthermore, complementary DNA in solution hybridizes efficiently to immobilized chol-DNA.  相似文献   

12.
Four TAT peptide fragments were used to functionalize GaAs surfaces by adsorption from solution. In addition, two well-studied alkylthiols, mercaptohexadecanoic acid (MHA) and 1-octadecanethiol (ODT) were utilized as references to understand the structure of the TAT peptide monolayer on GaAs. The different sequences of TAT peptides were employed in recognition experiments where a synthetic RNA sequence was tested to verify the specific interaction with the TAT peptide. The modified GaAs surfaces were characterized by atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared reflection absorption spectroscopy (FT-IRRAS). AFM studies were used to compare the surface roughness before and after functionalization. XPS allowed us to characterize the chemical composition of the GaAs surface and conclude that the monolayers composed of different sequences of peptides have similar surface chemistries. Finally, FT-IRRAS experiments enabled us to deduce that the TAT peptide monolayers have a fairly ordered and densely packed alkyl chain structure. The recognition experiments showed preferred interaction of the RNA sequence toward peptides with high arginine content.  相似文献   

13.
The complexes of fourteen substituted aryldiazonium salts RC6H4N2+BF4? (R?H, p-CH3, p-NO2, p-I, p-Cl, p-F, m-Br, m-Cl. m-CH3, o-CH3, o-OCH3, o-NO2, o-Br, o-Cl) with crown ethers 18-C-6 (1) and dibenzo-24-c-8 (2) have been studied by XPS. The results show that the chemical shifts of α-N1s and β-N1s of substituted aryldiazonium salts are closely related to the induction and conjugation effects of R groups. It is interesting to note that charge transfer(β-N→O) take place upon complexation of substituted aryldiazonium salts with crown ethers. Therefore the decrease of binding energy of crown ether oxygen may be used as a measurement of the stabilities of these complexes.  相似文献   

14.
15.
Weck M  Jones CW 《Inorganic chemistry》2007,46(6):1865-1875
The Mizoroki-Heck reaction is a palladium-catalyzed reaction of both practical importance and scientific significance. Two challenges currently faced by practitioners of the Heck and other palladium-catalyzed coupling reactions are (i) minimizing the costs associated with this reaction by developing high TON catalysts or facilitating catalyst recovery and (ii) elucidating the nature of the active species when using various different precatalysts. These two challenges, one practical and one fundamental, served as our motivation in our studies of immobilized molecular palladium(II) complexes as precatalysts in Mizoroki-Heck reactions. This Forum Article describes our investigations in this area, highlighting our approach to the elucidation of the active catalyst by combining kinetic and poisoning studies of several different related precatalysts, our development of new, selective catalyst poisons, and our quest for stable, recyclable supported Heck, Suzuki, and Sonogashira coupling catalysts. Under high-temperature conditions (120 degrees C), all precatalysts studied are conclusively shown to decompose, liberating soluble, active palladium(0) species that are the true catalysts. Techniques for the elucidation of the nature of the truly active Pd species are enumerated.  相似文献   

16.
The interaction of aryldiazonium ions with some Schiff-base complexes of cobalt and ruthenium have been studied. With cobalt, one-electron oxidation of [Co(II)Salen] occurred; with [Co(I)Salen] the corresponding Co(III)-aryl complexes were isolated. In the case of ruthenium oxidation also occurs, [Ru(Salen)(CO)py] gave the corresponding monocation. The results, especially for ruthenium, are in contrast to the stabilisation of both nitrosyl and aryldiazonium adducts in analogous porphyrin complexes.  相似文献   

17.
The grafting of molecular layers to carbon-based materials provides a way to combine the high chemical and thermal stability of these materials with surface properties such as chemical recognition or reactivity. The functionalization of surfaces with ultraviolet light has emerged as a way to modify difficult-to-functionalize materials, such as diamond. We have performed a combined experimental and computational investigation of the photochemical reaction of terminal alkenes with hydrogen-terminated carbon surfaces. 1-Alkenes carrying various terminal functional groups (-NHCOCF3, -NHCOO(tert-butyl), -COOCH3, -CH3) were grafted from the neat liquids using 254 nm light. These layers were characterized using X-ray Photoelectron Spectroscopy and Infrared Reflectance Absorption Spectroscopy. Pronounced differences in reactivity were observed between the molecules: trifluoroacetamide-terminated alkenes grafted the fastest and yielded self-terminating layers after approximately 4 h. Ultraviolet photoelectron spectroscopy and photocurrent measurements show that the grafting reaction involves photoemission of electrons into the liquid. Density functional calculations show that the reactivities of the four molecules are correlated with their electron affinities, with the trifluoroacetamide group acting as the best electron acceptor and having the highest reactivity. Our results demonstrate that photoejection of electrons from the solid into the acceptor levels of the alkenes initiates the functionalization reaction and controls the overall rate. Finally, marginally reactive n-alkenes were induced to react and form dense monolayers by seeding the carbon surface with small amounts of a good electron acceptor, such as the trifluoroacetamide moiety. This study provides important new mechanistic insights into the use of ultraviolet light to initiate grafting of alkenes onto surfaces.  相似文献   

18.
本文用XOS 研究了十四种芳基重氮盐及其与18-c-6(1)和二苯并-24-c-8(2)的配合物.结果表明, 重氮盐中α-N1s 结合能的化学移大小与R有关. 重氮盐与冠醚以β-N向醚氧提供电子(β-N→O)而配位的, 而醚氧O1s 结合能降低多少似可反映配合物的稳定性.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号