首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Single-walled carbon nanotubes (SWNTs) demonstrate remarkable electronic and mechanical properties useful in developing areas such as nanoelectromechanical systems and flexible electronics. However, the highly inhomogeneous electronic distribution arising from different diameters and chirality in any given as-synthesized SWNT samples imposes severe limitations. Recently demonstrated selective chemical functionalization methods may provide a simple scalable means of eliminating metallic tubes from SWNT transistors and electronic devices. Here, we report on combined electron transport and Raman studies on the reaction of 4-bromobenzene diazonium tetrafluoroborate directly with single and networks of SWNT transistors. First, Raman studies are carried out on isolated individual SWNTs grown on SiO2/Si substrates by chemical vapor deposition with and without metal contacts. Metallic tubes are found to have, on average, higher reactivity toward diazonium reagents. However, a considerable degradation of electrical properties of semiconducting tubes occurs if the reaction is carried out to the point where the conductivity of metallic tubes is significantly suppressed. Insights from single-tube studies are then applied to elucidate the electrical and the Raman responses of SWNT random network transistors of different channel lengths to chemical functionalization.  相似文献   

2.
The electrical transport and NH3 sensing properties of randomly oriented and aligned SWNT networks were presented and discussed. The results indicate that aligned SWNT‐FETs have better FET characteristics due to the reduced number of interconnected nodes. This was particularly true as the resistance of the devices increased. Gated electrical breakdown was implemented to selectively remove metallic (m‐) SWNTs, thereby reducing scattering centers. This technique provided significant improvements in FET characteristics resulting in greater on/off ratio (e.g. 104). AC dielectrophoretic alignment followed by selective electrical breakdown of m‐SWNTs can significantly enhance the semiconducting properties of SWNT networks which resulted in highly sensitive sensors.  相似文献   

3.
Zhang H  Wu B  Hu W  Liu Y 《Chemical Society reviews》2011,40(3):1324-1336
Single-walled carbon nanotubes (SWNTs) possess unique electronic properties that make them very promising materials for use in both nano-electronics and thin film devices. However, SWNTs are always produced as a mixture of metallic and semiconducting nanotubes, which is a major roadblock to their widespread application. This tutorial review provides a brief summary of ways of separating single-walled carbon nanotubes into metallic and semiconducting fractions. Various methods including selective growth, selective removal, selective adsorption and band structure modulation--all of which aim to produce pure SWNTs with well-defined electronic properties--are systematically discussed. The main problems in this field, the outlook for separation techniques and some views of future developments are presented.  相似文献   

4.
The encapsulation of viologen derivatives into metallic single‐walled carbon nanotubes (SWNTs) results in the opening of a band gap, making the SWNTs semiconducting. Raman spectroscopy, thermogravimetric analysis, and aberration‐corrected high‐resolution transmission electron microscopy confirm the encapsulation process. Through the fabrication of field‐effect transistor devices, the change of the electronic structure of the tubes from metallic to semiconducting upon the encapsulation is confirmed. The opening of a gap in the band structure of the tubes was not detected in supramolecular controls.  相似文献   

5.
While it is well-known that tube-tube interaction causes changes (peak red-shift and suppression) in the optical absorption of single-walled carbon nanotubes (SWNTs), we found in this work that, upon bundling, the optical absorption of metallic SWNTs (M11) is less affected compared to their semiconducting counterparts (S11 or S22), resulting in enhanced absorbance ratio of metallic and semiconducting SWNTs (A(M)/A(S)). Annealing of the SWNTs increases this ratio due to the intensified tube-tube interaction. We have also found that the interaction between SWNTs and the surfactant Triton X-405 has a similar effect. The evaluation of SWNT separation by types (metallic or semiconducting) based on the optical absorption should take these effects into account.  相似文献   

6.
Ever since the discovery of single-walled carbon nanotubes (SWNTs), there have been many reports and predictions on their superior properties for use in a wide variety of potential applications. However, an SWNT is either metallic or semiconducting; these properties are distinctively different in electrical conductivity and many other aspects. The available bulk-production methods generally yield mixtures of metallic and semiconducting SWNTs, despite continuing efforts in metallicity-selective nanotube growth. Presented here are significant advances and major achievements in the development of postproduction separation methods, which are now capable of harvesting separated metallic and semiconducting SWNTs from different production sources with sufficiently high enrichment and quantities for satisfying at least the needs in research and technological explorations. Opportunities and some available examples for the use of metallic SWNTs in transparent electrodes and semiconducting SWNTs in various device nanotechnologies are highlighted and discussed.  相似文献   

7.
8.
Substantial separation of single-wall carbon nanotubes (SWNTs) according to type (metallic versus semiconducting) has been achieved for HiPco and laser-ablated SWNTs. We presently argue that stable dispersions of SWNTs with octadecylamine (ODA) in tetrahydrofuran (THF) originate from the physisorption and organization of ODA along the SWNT sidewalls in addition to the originally proposed zwitterion model. Furthermore, the reported affinity of amine groups for semiconducting SWNTs, as opposed to their metallic counterparts, contributes additional stability to the physisorbed ODA. This provides a venue for the selective precipitation of metallic SWNTs upon increasing dispersion concentration, as indicated by Raman investigations.  相似文献   

9.
We designed and synthesized 4‐dodecyloxybenzenediazonium tetrafluoroborate ( 1 ), which preferentially reacts with metallic single‐walled carbon nanotubes (SWNTs) by kinetic control. We first determined the suitable experimental conditions for the preferential reaction of 1 with individually dissolved SWNTs by monitoring the decrease in absorbance for the metallic SWNT in the range of 400–650 nm in the absorption spectrum of the SWNTs. The reacted SWNTs were thoroughly rinsed with THF to obtain THF‐insoluble SWNTs. The Raman spectrum of the THF‐insoluble SWNTs showed a strong peak near 180 cm?1, which corresponds to a semiconducting breathing band. The metallic breathing bands (≈220 cm?1) and Breit–Wingner–Fano (BWF) modes (1520 cm?1) corresponding to the metallic SWNTs were much weaker than those of the pristine SWNTs. We also confirmed that metallic peaks in the range of 400–650 nm in the absorption spectrum of THF‐insoluble SWNTs that were individually dissolved in an aqueous micelle of sodium cholate were almost nondetectable. All the results indicate that the THF‐insoluble SWNTs are semiconducting.  相似文献   

10.
A derivatized porphyrin with long alkyl chains, 5,10,15,20-tetrakis(hexadecyloxyphenyl)-21H,23H-porphine, is selective toward semiconducting single-walled carbon nanotubes (SWNTs) in presumably noncovalent interactions, resulting in significantly enriched semiconducting SWNTs in the solubilized sample and predominantly metallic SWNTs in the residual solid sample according to Raman, near-IR absorption, and bulk conductivity characterizations.  相似文献   

11.
The separation and isolation of semiconducting and metallic single‐walled carbon nanotubes (SWNTs) on a large scale remains a barrier to many commercial applications. Selective extraction of semiconducting SWNTs by wrapping and dispersion with conjugated polymers has been demonstrated to be effective, but the structural parameters of conjugated polymers that dictate selectivity are poorly understood. Here, we report nanotube dispersions with a poly(fluorene‐co‐pyridine) copolymer and its cationic methylated derivative, and show that electron‐deficient conjugated π‐systems bias the dispersion selectivity toward metallic SWNTs. Differentiation of semiconducting and metallic SWNT populations was carried out by a combination of UV/Vis‐NIR absorption spectroscopy, Raman spectroscopy, fluorescence spectroscopy, and electrical conductivity measurements. These results provide new insight into the rational design of conjugated polymers for the selective dispersion of metallic SWNTs.  相似文献   

12.
Covalent sidewall addition to single-walled nanotubes (SWNTs) of a series of organolithium and organomagnesium compounds (nBuLi, tBuLi, EtLi, nHexLi, nBuMgCl, tBuMgCl) followed by reoxidation is reported. The functionalized R(n)-SWNTs were characterized by Raman and NIR emission spectroscopy. The reaction of SWNTs with organolithium and magnesium compounds exhibits pronounced selectivity: in general, metallic tubes are more reactive than semiconducting ones. The reactivity of SWNTs toward the addition of organometallic compounds is inversely proportional to the diameter of the tubes. This was determined simultaneously and independently for both metallic and semiconducting SWNTs. The reactivity also depends on the steric demands of the addend. Binding of the bulky t-butyl addend is less favorable than addition of primary alkyl groups. Significantly, although tBuLi is less reactive than, for example, nBuLi, it is less selective toward the preferred reaction with metallic tubes. This unexpected behavior is explained by fast electron transfer to the metallic SWNTs having low-lying electronic states close to the Fermi level, a competitive initial process. The NIR emission of weakly functionalized semiconducting SWNTs, also reported for the first time, implies interesting applications of functionalized tubes as novel fluorescent reporter molecules.  相似文献   

13.
It remains an elusive goal to obtain high performance single-walled carbon-nanotube (SWNT) electronics such as field effect transistors (FETs) composed of single- or few-chirality SWNTs, due to broad distributions in as-grown materials. Much progress has been made by various separation approaches to obtain materials enriched in metal or semiconducting nanotubes or even in single chiralties. However, research in validating SWNT separations by electrical transport measurements and building functional electronic devices has been scarce. Here, we performed length, diameter, and chirality separation of DNA functionalized HiPco SWNTs by chromatography methods, and we characterized the chiralities by photoluminescence excitation spectroscopy, optical absorption spectroscopy, and electrical transport measurements. The use of these combined methods provided deeper insight to the degree of separation than either technique alone. Separation of SWNTs by chirality and diameter occurred at varying degrees that decreased with increasing tube diameter. This calls for new separation methods capable of metallicity or chirality separation of large diameter SWNTs (in the approximately 1.5 nm range) needed for high performance nanoelectronics. With most of the separated fractions enriched in semiconducting SWNTs, nanotubes placed in parallel in short-channel (approximately 200 nm) electrical devices fail to produce FETs with high on/off switching, indicating incomplete elimination of metallic species. In rare cases with a certain separated SWNT fraction, we were able to fabricate FET devices composed of small-diameter, chemically separated SWNTs in parallel, with high on-/off-current (I(on)/I(off)) ratios up to 105 owing to semiconducting SWNTs with only a few (n,m) chiralities in the fraction. This was the first time that chemically separated SWNTs were used for short channel, all-semiconducting SWNT electronics dominant by just a few (n,m)'s. Nevertheless, the results suggest that much improved chemical separation methods are needed to produce nanotube electronics at a large scale.  相似文献   

14.
In the applications of single-walled carbon nanotubes (SWNTs), it is extremely important to separate semiconducting and metallic SWNTs. Although several methods have been reported for the separation, only low yields have been achieved at great expense. We show a separation method involving a dispersion-centrifugation process in a tetrahydrofuran solution of amine, which makes metallic SWNTs highly concentrated to 87% in a simple way.  相似文献   

15.
Single-walled carbon nanotubes (SWNTs) have been fluorinated by CF4 plasma exposure and further functionalized with 1,2-diaminoethane. The degree of amino functionalization is dependent on the degree of initial fluorination rather than oxygen or carbon defects. Reaction at both ends of 1,2-diaminoethane was observed to increase with fluorine content. Back-gated SWNT devices have shown p-type semiconducting behavior for CF4-functionalized SWNTs and n-type semiconducting behavior for amino-functionalized SWNTs. The degree of n-type behavior increases with the amount of nitrogen attached to the SWNTs.  相似文献   

16.
现晓军  刘忠范 《中国科学B辑》2009,39(10):1069-1088
单壁碳纳米管具有优异的电子学特性,是制备新一代高性能集成电路的重要材料.碳纳米管芯片之路存在诸多挑战,包括直径和手性的控制生长方法、金属性和半导体性单壁碳纳米管的分离方法、器件加工与集成方法等.这些课题从本质上讲大多属于化学问题,因此碳纳米管芯片研究为化学家们提供了新的机遇与挑战.过去10年来,我们围绕单壁碳纳米管的轴向能带工程这一研究思路,开展了一系列碳纳米管芯片的基础探索工作,发展了若干有效的单壁碳纳米管局域能带的调控方法,包括温度阶跃生长法、脉冲供料生长法、基底调控法以及形变调控法等.本文系统地阐述了这些局域能带调控方法,为使读者对该领域的研究进展有一个较为全面的了解,文中对其他课题组开展的代表性工作也给予了综述性介绍.  相似文献   

17.
Using first principles calculations, we report for the first time that large nearly neutral aromatic molecules, such as naphthalene and anthracene, and small charge-transfer aromatic molecules, such as TCNQ and DDQ, interact more strongly with metallic single-wall carbon nanotubes (SWNTs) versus their semiconducting counterparts as the molecular orientation of DDQ is taken into account. Hence two new mechanisms for separating metallic and semiconducting SWNTs via noncovalent pi-pi stacking or charge-transfer interaction are suggested.  相似文献   

18.
The length-fractionation of shortened (250 to 25 nm), zwitterion-functionalized, single wall carbon nanotubes (SWNTs) has been demonstrated via gel permeation chromatography (GPC). The UV-Vis spectrum of each fraction indicates an apparent "solubilization", as evident by the direct observation of all predicted optically allowed interband transitions between the mirror image spikes in the density of states of both metallic and semiconducting SWNTs with various tube diameters. As evident by the presence or absence of the 270 nm, pi-plasmon absorption, this "solubilization" is a dynamic process and leads to re-aggregation if left undisturbed for a couple of weeks or upon dissociation of the pendant octadecylamine groups. This non-destructive and highly versatile separation methodology opens up an array of possible applications for shortened SWNTs in nanostructured devices.  相似文献   

19.
The development of a simple and facile method to extract single‐walled carbon nanotubes (SWNTs) with a specific chirality index is one of the most‐crucial issues in the fundamental study and applications of the SWNTs. We have compared the selective recognition/extraction of the SWNT chirality of poly(9,10‐dioctyl‐9,10‐dihydrophenanthrene‐2,7‐diyl) (2C8‐PPhO) to that of poly(9,9‐dioctyfluoreny1‐2,7‐diyl) (2C8‐PFO) that are able to extract specific semiconducting SWNTs free of any metallic SWNTs. Vis/NIR absorption, 2D photoluminescence, and Raman spectroscopy as well as molecular mechanical simulations were used to analyze and understand the obtained chiral selective solubilization behavior. We found that 2C8‐PPhO selectively extracts and enriches the (8,6), (8,7), and (9,7)SWNTs, whose behaviors are different from that of 2C8‐PFO, which preferentially extracts the (7,5), (7,6), (8,6), and (8,7)SWNTs. Our results indicate that 2C8‐PPhO preferably recognizes larger‐diameter SWNTs with higher chiral angles compared to those recognized by 2C8‐PFO. These findings demonstrate that the difference in the non‐aromatic ring numbers on the polymers results in different SWNT chirality recognition/extraction behaviors.  相似文献   

20.
The dispersion of small-diameter single-walled carbon nanotubes (SWNTs) produced by the CoMoCAT method in tetrahydrofuran (THF) with the use of amine was studied. The absorption, photoluminescence, and Raman spectroscopies showed that the dispersion and centrifugation process leads to an effective separation of metallic SWNTs from semiconducting SWNTs. Since this method is simple and convenient, it is highly applicable to an industrial utilization for widespread applications of SWNTs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号