首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The double cyanides of nickel and platinum form structures capable of enclosing also phenol, for example, as guest molecule. Such clathrates are Ni(NH3)2Pt(CN)4 2 C6H5OH and Ni(en)2Pt(CN)4 · 0.14 C6H5OH. In the case of the tetracyano complexes, different thermal stabilities of their clathrate compounds could be achieved by alteration of the constituents of the cage structure and also of the guest molecules. According to the thermal behaviour, the clathrates may be divided into two groups: those which release the guest molecules in the first step of thermal decomposition (Ni(NH3)2Pt(CN)4· 2 C6H5OH), and those which lose the guest component only after partial destruction of the host cage (Ni(en)2Pt(CN)4 · 0.14 C6H5OH). The temperature ranges of loss of the guest component may determine the interval for their use in sorptive experiments. The temperature range for release of phenol from Ni(NH3)2Pt(CN)4 · · 2 C6H5OH is 55–244°, and from Ni(en)2Pt(CN)4 · 0.14 C6H5OH is 139–284°. The model host molecules NiPt(CN)4 · 6 H2O and Ni(en)3Pt(CN)4 · 3 H2O were also studied by thermal analysis.  相似文献   

2.
Hydrates of 3-phenylpropenal thiosemicarbazone (HL·H2O) and semicarbazone (HL′·H2O) react in methanol with cobalt, nickel, copper, and zinc chlorides, nitrates, and acetates to form coordination compounds MX2·2HL·nSolv [M = Co, Ni, Cu, Zn; X = Cl, NO3; HL = C6H5CH=CH-CH=N-NHC(O)NH2; n = 0–3; Solv = H2O, CH3OH], CuX2·HL·nH2O [M = Ni, Cu; n = 0, 1], ML2·nH2O and ML′·nH2O [M = Co, Ni, Zn; HL′ = C6H5CH=CH-CH=N-NHC(O)NH2; n = 0–3]. In the presence of amines (A = C5H5N, 2-CH3C5H4N, 3-CH3C5H4N, and 4-CH3C5H4N) these reactions yield the complexes Cu(A)LCl·CH3OH and M(A)LX·nH2O [M = Cu, Ni; X = Cl, NO3; n = 0–2]. The copper complexes with the amine ligands are of polynuclear structure, and other complexes are monomeric. Carbazones (HL and HL′) are included in the complexes as bidentate N,S-and N,O-ligands. The thermolysis of the complexes involves the stages of removing solvent crystallization molecules (70–90°C), deaquation (150–170°C), and full thermal decomposition (500–580°C).  相似文献   

3.
Phenol, having favourable physical and chemical properties, can be enclosed as the guest component in the clathrates of tetracyano complexes. Six compounds of Hofmann and similar type clathrates M(NH3)2M' (CN)4.nG and M(en)m M'(CN)4.nG were prepared and identified: Ni(NH3)2Pt.2C6H5OH; Ni(en)2Pt(CN)4.O.14C6H5OH; Ni(NH3)2Pt(CN)4.C6H5OH.H2O; Zn(NH3)2Ni(CN)4.O.1C6H5OH.H2O; Cu(NH3)2Ni(CN)4. 2C6H5OH and Fe(NH3)2Ni(CN)4.2C6H5OH. The phenol containing clathrates are more stable than clathrates containing other guest molecules. In the case of Ni(en)2 Pt(CN)4.O.14C6H5OH thermal loss of the guest molecule leaves the host lattice intact, but further heating results in the rupture of the host lattice. The compounds were capable in the solid state of sorbing other organic molecules once they had been heated to the temperature required for almost complete loss of guest molecule i.e. n→o.  相似文献   

4.
The time-dependent changes which are observed in the infrared and Raman spectra of samples of the two Hofmann aniline clathrates M(NH3)2Ni(CN)4.an2 {M = Cd(II), Ni(II), an = C6H5NH2} indicate the occurrence of a solid state ligand replacement reaction in which the aniline guest molecule replaces the coordinated ammonia to give Man2Ni(CN)4 as the final product. The rate of replacement is greater for the cadmium than for the nickel clathrate, and for both clathrates evacuation of the sample greatly increases the rate of replacement. The Man2Ni(CN)4 complexes can themselves act as host lattices forming clathrates containing guest molecules such as aniline.  相似文献   

5.
On the Crystal Structures of the Cyano Complexes [Co(NH3)6][Fe(CN)6], [Co(NH3)6]2[Ni(CN)4]3 · 2 H2O, and [Cu(en)2][Ni(CN)4] Of the three title compounds X‐ray structure determinations were performed with single crystals. [Co(NH3)6][Fe(CN)6] (a = 1098.6(6), c = 1084.6(6) pm, R3, Z = 3) crystallizes with the CsCl‐like [Co(NH3)6][Co(CN)6] type structure. [Co(NH3)6]2[Ni(CN)4]3 · 2 H2O (a = 805.7(5), b = 855.7(5), c = 1205.3(7) pm, α = 86.32(3), β = 100.13(3), γ = 90.54(3)°, P1, Z = 1) exhibits a related cation lattice, the one cavity of which is occupied by one anion and 2 H2O, whereas the other contains two anions parallel to each other with distance Ni…Ni: 423,3 pm. For [Cu(en)2][Ni(CN)4] (a = 650.5(3), b = 729.0(3), c = 796.5(4) pm, α = 106.67(2), β = 91.46(3), γ = 106.96(2)°, P1, Z = 1) the results of a structure determination published earlier have been confirmed. The compound is weakly paramagnetic and obeys the Curie‐Weiss law in the range T < 100 K. The distances within the complex ions of the compounds investigated (Co–N: 195.7 and 196.4 pm, Ni–C: 186.4 and 186.9 pm, resp.) and their hydrogen bridge relations are discussed.  相似文献   

6.
Two three-dimensional supramolecular water architectures, [Zn(phen)3]2·[Zn(C10H16O4)·(H2O)3]·(C10H16O4)2·20H2O (1) and [Co(phen)3]2·[Co(H2O)6]·(C10H16O4)3·30H2O (2) [phen = 1,10-Phenanthroline, C10H16O4 = sebacic dianion], have been synthesized and characterized by IR, elemental analysis, thermogravimetric analysis, and single-crystal X-ray diffractions. The two structures both contain extensive hydrogen bonding between water molecules as well as between water molecules and sebacic anions. The water molecules and sebacic acid O atoms assembled 2D supramolecular corrugated sheets with different morphology in the two complexes.  相似文献   

7.
Crystal Structures of Octacyanomolybdates(IV). IV Dodecahedral [Mo(CN)8] Coordination of the Cyano‐Bridged Cobalt and Nickel Ammin Complexes MII2(NH3)8[Mo(CN)8] · 1.5 H2O (MII = Co, Ni) and Ni2(NH3)9[Mo(CN)8] · 2 H2O At single crystals of the hydrated cyano complexes Co2(NH3)8[Mo(CN)8] · 1.5 H2O (a = 910.0(4), b = 1671(2), c = 1501(1) pm, β = 93.76(6)°) and Ni2(NH3)8[Mo(CN)8] · 1.5 H2O (a = 899.9(9), b = 1654.7(4), c = 1488(1) pm, β = 94.01°), isostructurally crystallizing in space group P21/c, Z = 4, and of trigonal Ni2(NH3)9[Mo(CN)8] · 2 H2O (a = 955.1(1), c = 2326.7(7) pm, P31, Z = 3), X‐ray structure determinations were performed at 168 resp. 153 K. The [Mo(CN)8]4– groups of the three compounds, prepared at about 275 K and easily decomposing, show but slightly distorted dodecahedral coordination (mean distances Mo–C: 216.3, 215.4 and 216.1 pm). Within the monoclinic complexes the anions twodimensionally form cyano bridges to the ammin cations [M(NH3)4]2+ and are connected with the resulting [MN6] octahedra (Co–N: 215.1 pm, Ni–N: 209.8 pm) into strongly puckered layers. The trigonal complex exhibits a chain structure, as one [Ni(NH3)5]2+ cation is only bound as terminal octahedron (Ni–N: 212.0 pm). Details and the influence of hydrogen bridges are discussed.  相似文献   

8.
A new mononuclear Ni(II) N 6-benzylaminopurine supramolecule [Ni(6-BA-H2)2(H2O)4]·(R)2·4H2O (1) (6-BA = N 6-benzylaminopurine (C5H2N3NH)(NH)CH2(C6H5), H3R = 5-sulfosalicylic acid (C6H3)CO2H· (OH)SO3H) is firstly synthesized by the volatile method. Compound 1 possesses a 3D supramolecular structure built via H-bonds and π-π stacking interactions. In the structure, a mononuclear [Ni(6-BA-H2)2(H2O)4]6+ cation, in which the Ni(II) ion is 6-coordinated, bears six positive charges, and a fully deprotonated R3? anion is located in the void surrounding the mononuclear cation to balance the charge.  相似文献   

9.
New Co(II), Ni(II), and Cu(II) complexes with 4-(3-hydroxyphenyl)-1,2,4-triazole (L) with the compositions [Co3L6(H2O)5(C2H5OH)](NO3)6 · 2H2O · C2H5OH (I), [Ni3L6(H2O)6](NO3)6 · 2H2O (II), and [M3L6(H2O)6](ClO4)6 · nH2O (M = Co2+, n = 2 (III); Ni2+, n = 2 (IV); Cu2+, n = 0 (V)) are synthesized. The complexes are studied by X-ray structure analysis, X-ray diffraction analysis, UV and IR spectroscopy, and the statistical magnetic susceptibility method. All compounds have the linear trinuclear structure. Ligand L is coordinated to the metal ions by the N(1) and N(2) atoms of the heterocycle according to the bidentate bridging mode. In all compounds the coordination polyhedron of the metal atom is a distorted octahedron. The molecular and crystal structures of compound I, [Co3L6(H2O)6](ClO4)6 · 8C2H5OH (IIIa), and [Ni3L6(H2O)6](ClO4)6 · 8C2H5OH (IVa) are determined.  相似文献   

10.
Interaction of the tetrahedral chalcocyanide cluster anionic complexes of Re, K4[Re4Q4(CN)12] (Q=S, Se, Te), with Ni2+ cationic complexes with polydentate amines, such as ethylenediamine (En), diethylenetriamine (Dien), or triethylenetetraamine (Trien) was used to synthesize six novel complexes: [Ni(NH3)4(En)][{Ni(NH3)(En)2}Re4Te4(CN)12] · 2H2O, [{Ni(En)2}2Re4Se4(CN)12] · 3.5H2O, [Ni(NH3)3(Dien)]2[Re4Se4(CN)12] · 5.5H2O, [{Ni(NH3)2(Dien)}2Re4Te4(CN)12] · 2.5H2O. [Ni(NH3)2(Trien)][{Ni(NH3)(Trien)}Re4Se4(CN)12] · 2.5H2O, [{Ni(Trien)}2Re4S4(CN)12] · 3H2O. The complexes were studied by single-crystal X-ray diffraction analysis.  相似文献   

11.
The 5,5′-thiodisalicylato complexes of nickel(II) with water, ammonia, methylamine and pyridine were synthesized and their structure established to be [Ni(TDSA)L2·nH2O], where TDSA = 5,5′-thiodisalicylic acid, [C6H3(OH)(COOH)SC6H3(OH)(COOH)]. LH2O, NH3 CH3NH2 or pyridine, and n=3 for H2O, 2 for NH3 and CH3NH3, and 1 for pyridine complexes, from elemental analysis, IR and electronic spectroscopy, and magnetic susceptibility measurement. The thermal behaviour of the complexes has been studied by TG and DTA. TG shows three main steps of decomposition, viz. dehydration, axial base liberation, and decarboxylation leading to the formation of NiO at the final stage.  相似文献   

12.
The complexes of 4-chloro-2-methoxybenzoic acid anion with Mn2+, Co2+, Ni2+, Cu2+ and Zn2+ were obtained as polycrystalline solids with general formula M(C8H6ClO3)2·nH2O and colours typical for M(II) ions (Mn – slightly pink, Co – pink, Ni – slightly green, Cu – turquoise and Zn – white). The results of elemental, thermal and spectral analyses suggest that compounds of Mn(II), Cu(II) and Zn(II) are tetrahydrates whereas those of Co(II) and Ni(II) are pentahydrates. The carboxylate groups in these complexes are monodentate. The hydrates of 4-chloro-2-methoxybenzoates of Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) heated in air to 1273 K are dehydrated in one step in the range of 323–411 K and form anhydrous salts which next in the range of 433–1212 K are decomposed to the following oxides: Mn3O4, CoO, NiO and ZnO. The final products of decomposition of Cu(II) complex are CuO and Cu. The solubility value in water at 293 K for all complexes is in the order of 10–3 mol dm–3. The plots of χM vs. temperature of 4-chloro-2-methoxybenzoates of Mn(II), Co(II), Ni(II) and Cu(II) follow the Curie–Weiss law. The magnetic moment values of Mn2+, Co2+, Ni2+ and Cu2+ ions in these complexes were determined in the range of 76−303 K and they change from: 5.88–6.04 μB for Mn(C8H6ClO3)2·4H2O, 3.96–4.75 μB for Co(C8H6ClO3)2·5H2O, 2.32–3.02 μB for Ni(C8H6ClO3)2·5H2O and 1.77–1.94 μB for Cu(C8H6ClO3)2·4H2O.  相似文献   

13.
X-ray photoelectron spectra of the single valence platinum complexes K2[Pt(CN)4] · 3H2O(1),K2[Pt(CN)4]Cl0.3 · n H2O(2) and K2[Pt(CN)4]Cl2 · 3H2O(3) and the mixed valence compound [PtII(C2H5NH2)4]Cl4 · [PtIV (C2H5NH2)4Cl2] · 4H2O(4) have been measured. It is found that one can distinguish clearly between mixed and single valence compounds by electron spectroscopy. The Pt spectrum of (4) is a superposition of a PtII and PtIV spectrum. The chemical shift between (1) and (3) is normal, however (2) shows an anomalous low binding energy for the Pt 4f electrons. The importance of using reliable reference peaks for obtaining absolute binding energies is emphasized.  相似文献   

14.
In the crystal structure of [(n-C4H9)4N]+·[NH2(C2N2S)NHCOO?]·NH2CSNC(NH2)2 (1), guanylthiourea molecules and 1,3,5-thiadiazole-5-amido-2-carbamate ions are joined together by intermolecular N–H…O, N–H…N, and weak N–H…S hydrogen bonds to generate stacked host layers corresponding to the (110) family of planes, between which the tetra-n-butylammonium guest cations are orderly arranged in a sandwich-like manner. In the crystal structure of [(n-C3H7)4N]+·[NH2(C2N2S)NHCOO?]·NH2CSNC(NH2)2·H2O (2), the tetrapropyl ammonium cations are stacked within channels each composed of hydrogen bonded ribbons of guanylthiourea molecules, 1,3,5-thiadiazole-5-amido-2-carbamate ions and water molecules.  相似文献   

15.
The crystal structure of the double copper(II) complex with borodicitric acid [Cu(H2O)5(C6H6O7)2B]+ · [(C6H6O7)2B]? · 5H2O of composition Cu[(C6H6O7)2B]2 · 10H2O has been studied by X-ray crystallography. The crystals are monoclinic, space group P21): a = 10.7852(2) ?, b = 9.9980(2) ?, c = 17.9500(5) ?; ?? = 101.126(1)°, FW = 1025.75, V = 1899.18(7) ?3, Z = 2. The dicitratoborate anions with a spirane structure have a normal geometry. The coordination polyhedron of the copper atoms is a distorted octahedron (CN 6 = 4 + 2) with an average equatorial Cu-O distance of 1.965 ± 0.023 ?. The axial positions in the CuO6 octahedron are occupied by a water molecule and an oxygen atom of one of the citrate ligands: Cu-O(5w), 2.430(3) ?; Cu-O(8), 2.382(3) ?. The crystals have an extended intricate system of hydrogen bonds consisting of 27 unique three-center O-H??O, O(w)??O, and O(w)??O(w??) bonds and four-center O(w)??O, O(w??) bonds with different structural functions.  相似文献   

16.
Characterization of Distortional Isomers of the Anions Pentacyano-oxo-molybdate(IV) and of Tetracyano-aqua-oxo-molybdate(IV) in the Solid State. Crystal Structures of [(C6H5)4P]3[MoO(CN)5] · 7 H2O (green), [(C6H5)4As]2[MoO(OH2)(CN)4] · 4 H2O (blue), and [(C6H5)4P]2[MoO(OH2) (CN)4] · 4 H2O (green) Preparation of a series of salts containing the new pentacyano-oxo-molybdate(IV) anion is described: Cs2H[MoO(CN)5] (blue), [(CH3)4N]2H[MoO(CN)5] · 2 H2O (blue) and [Cr(en)3] [MoO(CN)5] · 4 H2O (green). The green [(C6H5)4P]3[MoO(CN)5] · 7 H2O crystallizes triclinic in the space group P1 . The molybdenum(IV) center is in an pseudo-octahedral environment of a terminal oxo-group (d(Mo?O); 1.705(4) Å), a CN? group in the trans-position (d(Mo? C): 2.373(6) Å), and four equatorial CN? groups (averaged d(Mo? C): 2.178 (Å). The blue and green salts exhibit v(Mo?O) stretching frequencies at 948 cm?1 and 920 cm?1, respectively. Blue and green salts containing the [MoO(OH2)(CN)4]2? anion and [(C6H5)4P]+ or [(C6H5)4As]+ cations have been prepared and characterized by single crystal crystallography. [(C6H5)4P]2[MoO(OH2)(CN)4] · 4 H2O (green) and [(C6H5)4As]2[MoO(OH2)(CN)4] · 4 H2O (blue) crystallize monoclinic in the space group C—P21/n. They are considered to be distortional isomers of the complex anion: the green species has a Mo?O bond distance of 1.72(2) Å whereas for the blue species d(Mo?O) = 1.60(2) Å is found; the corresponding v(Mo?O) frequencies are at 920 cm?1 and 980 cm?1.  相似文献   

17.
A rhenium cluster complex [Ni(NH3)6]2.5·NH4[Re12CS17(CN)6]·8.5H2O is obtained and structurally described. The compound crystallizes in the triclinic space group P-1 with the unit cell parameters: a = 11.0856(13) Å, b = 15.242(2) Å, c = 21.232(3) Å, α = 90.158(4)°, β = 97.439(4)°, γ = 90.051(4)°, V = 3557.3(8) Å3, Z = 2, d calc = 3.287 g/cm3. The crystal structure represents a packing of [Ni(NH3)6]2+ and NH4 + cations, [Re12CS17(CN)6]6? cluster anions, and crystallization water molecules bound by a system of hydrogen bonds.  相似文献   

18.
trans‐Di­aqua­bis­(iso­quinoline‐1‐carboxyl­ato‐κ2N,O)­cobalt(II) dihydrate, [Co(C10H6NO2)2(H2O)2]·2H2O, and trans‐di­aqua­bis­(iso­quinoline‐1‐carboxyl­ato‐κ2N,O)­nickel(II) dihydrate, [Ni(C10H6NO2)2(H2O)2]·2H2O, contain the same isoquinoline ligand, with both metal atoms residing on a centre of symmetry and having the same distorted octahedral coordination. In the former complex, the Co—O(water) bond length in the axial direction is 2.167 (2) Å, which is longer than the Co—O(carboxylate) and Co—N bond lengths in the equatorial plane [2.055 (2) and 2.096 (2) Å, respectively]. In the latter complex, the corresponding bond lengths for Ni—O(water), Ni—O(carboxylate) and Ni—N are 2.127 (2), 2.036 (2) and 2.039 (3) Å, respectively. Both crystals are stabilized by similar stacking interactions of the ligand, and also by hydrogen bonds between the hydrate and coordinated water molecules.  相似文献   

19.
In the structure of the title salt, (NH4)(C8H20N)2[Fe(CN)6]·3H2O, the O atom of one of the water molecules shares its crystallographic site with the N atom of the ammonium cation in a 1:1 ratio. The second O atom from the two crystallographically independent water molecules is disordered over two positions separated by 0.551 (1) Å. The water molecules and ammonium cations form tetrameric hydrogen‐bonded units that, along with the complex anion, form the hydrophilic part of the structure. The hydrophobic part of the structure, represented by the tetraethylammonium cation, is located in cube‐like cavities of the hydrophilic framework.  相似文献   

20.
The solid-solid state reactions of o-aminobenzoic acid with Zn(OAc)2.2H2O, Cu(OAc)2 .H2O, Ni(OAc)2.4H2O and Mn(OAc)2.4H2O result in the formation of corresponding complexes M(OAB)2 (M = Zn(Ⅱ), Cu(Ⅱ), Ni(Ⅱ), Mn(IⅡ)). XRD, IR and elemental analysis methods have been used to characterize the solid products. The activation energies of these reactions, which are calculated from the kinetic data obtained by means of the isothermal electrical conductivity measurement method, have been found to increase in the order: Cu(OAc)2.H2O(37.7 kJ.mol-1)~Mn(OAc)2.4H2O (39.7kJ.mol-1) < Zn(OAc)2.2H2O (56.3 kJ.mol-1) < Ni(OAc)2.4H2O (85.2 kJ.mol-1). The trend is related to their crystal structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号