首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
An ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was developed and validated for the determination of trantinterol enantiomers in rat plasma. Diphenhydramine was employed as the internal standard. The plasma samples were prepared using liquid-liquid extraction with n-hexane-dichloromethane-isopropanol (20:10:1, v/v/v) as the extractant. Trantinterol enantiomers after pre-column derivatization using diacetyl-l-tartaric anhydride (DATAAN) were separated on a C18 column using a gradient solvent programme. The mobile phase was composed of 3 mM ammonium acetate and acetonitrile. The detection was performed on a triple-quadrupole tandem mass spectrometer by multiple reaction monitoring (MRM) mode via electrospray ionization (ESI). Linear calibration curve for each enantiomer was obtained in the concentration range of 1-80 ng/mL, with limit of quantification (LOQ) of 1 ng/mL. The intra- and inter- precision (R.S.D.) values were below 9.6% and accuracy (R.E.) was from −2.4 to 6.2% at all quality control (QC) levels. The developed method was applied to the enantioselective pharmacokinetic study of trantinterol in rats.  相似文献   

2.
A sensitive enantioselective high-performance liquid chromatography (HPLC) method was developed and validated to determine S-(+)- and R-(-)-arotinolol in human plasma. Baseline resolution was achieved by using teicoplanin macrocyclic antibiotic chiral stationary phase (CSP) known as Chirobiotic T with a polar organic mobile phase consisting of methanol:glacial acetic acid:triethylamine, 100:0.1:0.1, (v/v/v) at a fl ow rate of 0.8 mL/min and UV detection set at 317 nm. Human plasma was spiked with stock solution of arotinolol enantiomers and labetalol as the internal standard. The assay involved the use of liquid-liquid extraction procedure with ethyl ether under alkaline condition for human plasma sample prior to HPLC analysis. Recoveries for S-(+)- and R-(-)-arotinolol enantiomers were in the range 93-103% at 200-1400 ng/mL level. Intra-day and inter-day precision calculated as %RSD was in the ranges 1.3-3.4 and 1.9-4.5% for both enantiomers, respectively. Intra-day and inter-day accuracies calculated as percentage error were in the ranges 1.2-3.5 and 1.5-6.2% for both enantiomers, respectively. Linear calibration curves in the concentration range 100-1500 ng/mL for each enantiomer showed a correlation coefficient (r) of 0.9998. The limit of quantitation (LOQ) and limit of detection (LOD) for each enantiomer in human plasma were 100 and 50 ng/mL (S/N = 3), respectively.  相似文献   

3.
We developed and validated a simple, sensitive, selective and reliable LC–ESI‐MS/MS method for direct quantitation of dropropizine enantiomers namely levodropropizine (LDP) and dextrodropropizine (DDP) in rat plasma without the need for derivatization as per regulatory guidelines. Dropropizine enantiomers and carbamazepine (internal standard) were extracted from 50 μL rat plasma using ethyl acetate. LDP and DDP resolved with good baseline separation (Rs = 4.45) on a Chiralpak IG‐3 column. The mobile phase consisted of methanol with 0.05% diethylamine pumped at a flow rate of 0.5 mL/min. Detection and quantitation were done in multiple reaction monitoring mode following the transitions m/z 237 → 160 and 237 → 194 for dropropizine enantiomers and the internal standard, respectively, in the positive ionization mode. The proposed method provided accurate and reproducible results over the linearity range of 3.23–2022 ng/mL for each enantiomer. The intra‐ and inter‐day precisions were in the ranges of 3.38–13.6 and 5.11–13.8 for LDP and 4.19–11.8 and 8.89–10.1 for DDP. Both LDP and DDP were found to be stable under different stability conditions. The method was successfully used in a stereoselective pharmacokinetic study of dropropizine enantiomers in rats following oral administration of racemate dropropizine at 100 mg/kg. The pharmacokinetic results indicate that the disposition of dropropizine enantiomers is not stereoselective and chiral inversion does not occur in rats.  相似文献   

4.
Capillary electrophoresis and liquid-phase microextraction using porous polypropylene hollow fibers were employed for the enantioselective analyses of mirtazapine and its metabolites demethylmirtazapine and 8-hydroxymirtazapine in human urine. Before the extraction, urine samples (1.0 mL) were submitted to enzymatic hydrolysis at 37 degrees C for 16 h. Then, the enzyme was precipitated with trichloroacetic acid, the pH was adjusted to 8 with 0.5 mol/L phosphate buffer solution (pH 11) and 15% sodium chloride was further added. The analytes were transferred from the aqueous donor phase, through n-hexyl ether (organic solvent immobilized in the fiber), into 0.01 moL/L acetic acid solution (acceptor phase). The electrophoretic analyses were carried out in 50 mmol/L phosphate buffer solution (pH 2.5) containing 0.55% w/v carboxymethyl-beta-cyclodextrin. The method was linear over the concentration range of 62.5-2500 ng/mL for each mirtazapine and 8-hydroxymirtazapine enantiomer and 62.5-1250 ng/mL for each demethylmirtazapine enantiomer. The quantification limit was 62.5 ng/mL for all the enantiomers. Within-day and between-day assay precision and accuracy were lower than 15% for all the enantiomers. Finally, the method proved to be suitable for pharmacokinetic studies.  相似文献   

5.
In this paper, a rapid method for the enantioselective analysis of the antiarrhythmic drug disopyramide and its main metabolite mono-N-dealkyldisopyramide in human plasma by capillary electrophoresis employing the cyclodextrin-modified electrokinetic chromatography mode is described. Sample clean-up was carried out by alkalinization with sodium hydroxide followed by liquid-liquid extraction with toluene. The complete enantioselective analysis was performed within less than 5 min using 20 mmol/L sodium acetate buffer, pH 5.0, containing 0.2% w/v sulfated beta-cyclodextrin as chiral selector. A 40 cm uncoated fused-silica capillary was used for the analysis, performed at a voltage of 15 kV and at 20 degrees C. The calibration curves were linear over the concentration range of 62.5-1850 ng/mL and 125-1850 ng/mL for each enantiomer of disopyramide and mono-N-dealkyldisopyramide. The mean recoveries for disopyramide and mono-N-dealkyldisopyramide enantiomers were up to 87 and 69%, respectively. All four enantiomers studied could be quantified at three different concentrations (200, 400 and 600 ng/mL) with coefficient of variation and % relative error not higher than 15%. The quantitation limit was 62.5 ng/mL for (+)-(S)-and (-)-(R)-disopyramide and (-)-(R)-mono-N-dealkyldisopyramide and 125 ng/mL for (+)-(S)-mono-N-dealkyldisopyramide, using 1 mL of human plasma.  相似文献   

6.
A highly sensitive, specific and enantioselective assay has been developed and validated for the estimation of TAK‐700 enantiomers [(+)‐TAK‐700 and (?)‐TAK‐700] in rat plasma on LC‐MS/MS‐ESI in the positive‐ion mode. Liquid–liquid extraction was used to extract (±)‐TAK‐700 enantiomers and IS (phenacetin) from rat plasma. TAK‐700 enantiomers were separated using methanol and 5 mm ammonium acetate (80:20, v/v) at a flow rate of 0.7 mL/min on a Chiralcel OJ‐RH column. The total run time was 7.0 min and the elution of (+)‐TAK‐700, (?)‐TAK‐700 and IS occurred at 3.71, 4.45 and 4.33 min, respectively. The MS/MS ion transitions monitored were m/z 308.2 → 95.0 for TAK‐700 and m/z 180.2 → 110.1 for IS. The standard curves for TAK‐700 enantiomers were linear (r2 > 0.998) in the concentration range 2.01–2015 ng/mL for each enantiomer. The inter‐ and intra‐day precisions were in the ranges 3.74–7.61 and 2.06–8.71% and 3.59–9.00 and 2.32–11.0% for (+)‐TAK‐700 and (?)‐TAK‐700, respectively. Both the enantiomers were found to be stable in a battery of stability studies. This novel method was applied to the study of stereoselective oral pharmacokinetics of (+)‐TAK‐700 and it was unequivocally demonstrated that (+)‐TAK‐700 does not undergo chiral inversion to its antipode in vivo. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
The enantioselective pharmacokinetics of mabuterol was studied in six rats after single oral dose administration of mabuterol racemate. Serial plasma samples were collected and the pharmacokinetic behavior of each enantiomer in rats was characterized using a sequential achiral and chiral liquid chromatographic method. This method involved the separation of mabuterol racemate from endogenous substances on an achiral ODS column and enantiomeric separation on a Chirobiotic V column. The plasma-concentration data were analyzed for individual mabuterol enantiomer using 3P97 software. After i.g. administration of mabuterol racemate at a dose of 10 mg/kg, both enantiomers were slowly absorbed, reaching mean C(max) of 266.8 and 277.9 ng/mL at t(max) of 5.3 and 5.7 h for R- and S-mabuterol, respectively. The AUC(0-infinity) (5,938.9 ng h/mL) of R-mabuterol was significantly higher than that (4,446.1 ng h/mL) of S-mabuterol, and the half-life (14.5 h) was longer than that (9.6 h) of S-mabuterol (p < 0.001 and p < 0.01, respectively), showing that enantioselective pharmacokinetics between mabuterol enantiomers occur during the metabolism phase.  相似文献   

8.
Pantoprazole, a proton pump inhibitor, is clinically used for the treatment of peptic diseases. An enantioselective LC‐MS/MS method was developed and validated for the simultaneous determination of pantoprazole enantiomers in human plasma. Pantoprazole enantiomers and the internal standard were extracted from plasma using acetonitrile. Chiral separation was carried on a Chiralpak IE column using the mobile phase consisted of 10 mm ammonium acetate solution containing 0.1% acetic acid–acetonitrile (28 : 72, v /v). MS analysis was performed on an API 4000 mass spectrometer. Multiple reactions monitoring transitions of m /z 384.1→200.1 and 390.1→206.0 were used to quantify pantoprazole enantiomers and internal standard, respectively. For each enantiomer, no apparent matrix effect was found, the calibration curve was linear over 5.00–10,000 ng/mL, the intra‐ and inter‐day precisions were below 10.0%, and the accuracy was within the range of –5.6% to 0.6%. This method was applied to the stereoselective pharmacokinetic studies in human after intravenous administration of S ‐(–)‐pantoprazole sodium injections. No chiral inversion was observed during sample storage, preparation procedure and analysis. While R ‐(+)‐pantoprazole was detected in human plasma with a slightly high concentration, which implied that S ‐(–)‐pantoprazole may convert to R ‐(+)‐pantoprazole in some subjects.  相似文献   

9.
A simple and enantioselective method was developed and validated for the simultaneous determination of (R)‐ and (S)‐lansoprazole in human plasma by chiral liquid chromatography with tandem mass spectrometry. Lansoprazole enantiomers and internal standard (esomeprazole) were extracted from plasma using acetonitrile as protein precipitating agent. Baseline chiral separation was achieved within 9.0 min on a Chiralpak IC column (150 mm × 4.6 mm, 5 μm) with the column temperature of 30°C. The mobile phase consisted of 10 mM ammonium acetate solution containing 0.05% acetic acid/acetonitrile (50:50, v/v). The mass spectrometric analysis was performed using a QTrap 5500 mass spectrometer coupled with an electrospray ionization source in positive ion mode. The multiple reactions monitoring transitions of m/z 370.1→252.1 and 346.1→198.1 were used to quantify lansoprazole enantiomers and esomeprazole, respectively. For each enantiomer, no apparent matrix effect was found, the calibration curve was linear over 5.00–3000 ng/mL, the intra‐ and inter‐day precisions were below 10.0%, and the accuracy was –3.8 to 3.3%. Analytes were stable during the study. No chiral inversion was observed during sample storage, preparation procedure and analysis. The method was applied to the stereoselective pharmacokinetic studies in human after intravenous administration of dexlansoprazole or racemic lansoprazole.  相似文献   

10.
Ketamine is an N‐methyl‐d ‐aspartate receptor antagonist that is usually used clinically as a racemic mixture. Its two enantiomers exhibit different pharmacological activities. To determine whether the enantiomers have different pharmacokinetic profiles, a chiral liquid chromatography–tandem mass spectrometry method was developed and validated for the determination of ketamine enantiomers in dog plasma. The enantiomers of ketamine were extracted from 50 μL of plasma by methyl tert‐butyl ether. Adequate chromatographic retention and baseline resolution of the enantiomers were achieved within a runtime of 5 min on a chiral column coated with polysaccharide derivatives, using a gradient mobile phase of acetonitrile and 10 mm ammonium bicarbonate aqueous solution. Ketamine enantiomers were detected by mass spectrometry with multiple reaction monitoring mode using the transitions of m/z 238.3 → 125.9 for the analytes and m/z 237.1 → 194.1 for carbamazepine (internal standard). The method was linear over the concentration range from 0.5 to 500 ng/mL for each enantiomer. The lower limit of quantification (LLOQ) for each enantiomer was 0.5 ng/mL. The intra‐ and inter‐day precision was <7.3% and 8.5% for R‐ and S‐ketamine, respectively. The accuracy was 92.9–110.4% for R‐ketamine and 99.8–102.4% for S‐ketamine. The method was successfully applied to characterize the stereoselective pharmacokinetic profiles of ketamine in beagle dogs.  相似文献   

11.
A sensitive and selective method for the analysis of ibuprofen enantiomers by LC–MS/MS was developed and validated for the purpose of application in pharmacokinetic studies in small experimental animals. Aliquots of 200 μL plasma were submitted to liquid–liquid extraction with hexane/diisopropylether (50:50 v/v) in acid pH. Separation was accomplished in a Chirex® 3005 (250 × 4.6 mm, 5 μm) column at 25°C with a mobile phase that consisted of 0.01 M ammonium acetate in methanol at a flow rate of 1.1 mL/min. The mass spectrometer consisted of an ESI interface operating at negative ionization mode and multiple reaction monitoring. The transitions 205 > 161 and 240 > 197 were monitored for ibuprofen enantiomers and fenoprofen (internal standard), respectively. Method validation included the evaluation of the matrix effect, stability, linearity, lower LOQ, within‐run and between‐run precision, and accuracy. The lower LOQ was 25 ng/mL for each ibuprofen enantiomer, and the calibration curves showed good linearity in the range 0.025–50 μg/mL. The method was successfully applied in the investigation of pharmacokinetic disposition of ibuprofen enantiomers in rats treated orally with 25 mg/kg of the racemate. Enantioselective kinetic disposition was observed with accumulation of (+)‐(S)‐ibuprofen in rats following single oral administration.  相似文献   

12.
A novel, fast and sensitive enantioselective HPLC assay with a new core–shell isopropyl carbamate cyclofructan 6 (superficially porous particle, SPP) chiral column (LarihcShell-P, LSP) was developed and validated for the enantiomeric separation and quantification of verapamil (VER) in rat plasma. The polar organic mobile phase composed of acetonitrile/methanol/trifluoroacetic acid/triethylamine (98:2:0.05: 0.025, v/v/v/v) and a flow rate of 0.5 mL/min was applied. Fluorescence detection set at excitation/emission wavelengths 280/313 nm was used and the whole analysis process was within 3.5 min, which is 10-fold lower than the previous reported HPLC methods in the literature. Propranolol was selected as the internal standard. The S-(−)- and R-(+)-VER enantiomers with the IS were extracted from rat plasma by utilizing Waters Oasis HLB C18 solid phase extraction cartridges without interference from endogenous compounds. The developed assay was validated following the US-FDA guidelines over the concentration range of 1–450 ng/mL (r2 ≥ 0.997) for each enantiomer (plasma) and the lower limit of quantification was 1 ng/mL for both isomers. The intra- and inter-day precisions were not more than 11.6% and the recoveries of S-(−)- and R-(+)-VER at all quality control levels ranged from 92.3% to 98.2%. The developed approach was successfully applied to the stereoselective pharmacokinetic study of VER enantiomers after oral administration of 10 mg/kg racemic VER to Wistar rats. It was found that S-(−)-VER established higher Cmax and area under the concentration-time curve (AUC) values than the R-(+)-enantiomer. The newly developed approach is the first chiral HPLC for the enantiomeric separation and quantification of verapamil utilizing a core–shell isopropyl carbamate cyclofructan 6 chiral column in rat plasma within 3.5 min after solid phase extraction (SPE).  相似文献   

13.
A simple, rapid and sensitive LC‐MS/MS method was developed and validated for the determination of free quercetin in rat plasma, using fisetin as internal standard. The detection was performed by negative ion electrospray ionization under selected reaction monitoring. Chromatographic separation (isocratic elution) was carried out using acetonitrile–10 m m ammonium formate (80:20, v/v) with 0.1% v/v formic acid. The lower limit of quantification (4.928 ng/mL) provided high sensitivity for the detection of quercetin in rat plasma. The linearity range was from 5 to 2000 ng/mL. Intra‐ and inter‐day variability (RSD) of quercetin extraction from rat plasma was <4.19 and 1.37% with accuracies of 98.77 and 99.67%. The method developed was successfully applied for estimating free quercetin in rat plasma, after oral administration of quercetin‐loaded biodegradable nanoparticles (QLN) and quercetin suspension. QLN (Cmax, 1277.34 ± 216.67 ng/mL; AUC, 17,458.25 ± 3152.95 ng hr/mL) showed a 5.38‐fold increase in relative bioavailability as compared with quercetin suspension (Cmax, 369.2 ± 108.07 ng/mL; AUC, 3276.92 ± 396.67 ng hr/mL). Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
A sensitive, enantioselective, high-performance liquid chromatographic (HPLC) method was developed and validated to determine S-(-)- and R-(+)-bisoprolol in human plasma. Baseline resolution was achieved using the teicoplanin macrocyclic antibiotic chiral stationary phase (CSP) known as Chirobiotic T with a polar ionic mobile phase (PIM) consisting of methanol-glacial acetic acid-triethylamine (100 : 0.02 : 0.025, v/v/v) at a flow rate of 1.5 ml/min and fluorescence detection set at 275 nm for excitation and 305 nm for emission. All analyses with S-(-)-atenolol as the internal standard were conducted at ambient temperature. The assay involved the use of a solid-phase extraction procedure for human plasma samples prior to HPLC analysis. The C18 cartridge gave good recovery rates for both enantiomers without any interference. The method was validated over the range of 20-200 ng/ml for each enantiomer concentration. Recovery rates for S-(-)- and R-(+)-bisoprolol enantiomers were in the range of 95-102%. The method proved to be precise (within-run precision expressed as % RSD ranged from 1.0-6.2% and between-run precision ranged from 0.9-6.7%) and accurate (within-run accuracies expressed as percentage error ranged from 0.2-4.8% and between-run accuracies ranged from 0.3-1.7%). The limit of quantitation and limit of detection for each enantiomer in human plasma were 20 and 5 ng/ml, respectively.  相似文献   

15.
A novel enantioselective assay is described for the simultaneous determination of the metrifonate enantiomers BAY z 7216 and BAY z 7217 in extracts of whole blood samples obtained from rats, mice, rabbits and Beagle dogs as well as in rat brain tissue using liquid chromatography tandem mass spectrometry (LC/MS/MS) with thermally and pneumatically assisted electrospray ionization (TurboIonSpray(R)). Chromatographic separation is achieved on a chiral normal phase column with a mobile phase containing 0.25% water only. The total run time per sample is 11.0 min giving chromatographic base line separation of the enantiomers. Compared with previous methods this assay offers a higher sample throughput, excellent ruggedness and higher sensitivity. The limits of quantification for each enantiomer are 5.00 microg/L from 0.5 mL whole blood and 7.50 ng/g (ppb) using 0.333 g brain tissue, respectively. Similar assay specifications have been derived for the two enantiomers. The method has been validated for the analysis of blood samples from low and high dosed preclinical pharmacokinetic and toxicokinetic studies, corresponding to two analytical working ranges like e.g. 5.00 to 1000 microg/L and 200 to 40000 microg/L (0. 200 to 40.0 mg/L). For rat brain tissue the validated concentration range is 7.50 to 750 ng/g (ppb).  相似文献   

16.
A liquid chromatography-tandem mass spectrometric (LC/MS/MS) method was developed for the determination of a selective Na(+)/H(+) exchanger inhibitor 4-cyano(benzo[b]thiophene-2-carbonyl)guanidine (KR-33028) in rat plasma. KR-33028 and the internal standard, linezolid, were extracted from rat plasma with ethyl acetate at neutral pH. The analytes were separated on an XBridge C(18) column with a mixture of methanol-0.1% formic acid (35:65, v/v) as mobile phase and detected using an electrospray ionization tandem mass spectrometry in the multiple-reaction-monitoring mode. The standard curve was linear (r = 0.9998) over the concentration range of 2.0-1000 ng/mL. The coefficients of variation of intra- and inter-assay were 1.3-6.8% and the relative error was 0.8-5.0%. The recoveries of KR-33028 and linezolid were 70.5 and 84.6%, respectively. The lower limit of quantification for KR-33028 was 2.0 ng/mL using 50 microL plasma sample. This method was successfully applied to the pharmacokinetic study of KR-33028 in rats.  相似文献   

17.
A sensitive and selective liquid chromatography–tandem mass spectrometric (LC–MS/MS) assay method has been developed and validated for the enantioselective determination of manidipine in human plasma using isotope‐labeled compounds as internal standards. After solid‐phase extraction, R ‐(−)‐manidipine and S ‐(+)‐manidipine were chromatographed on a Chiralpack IC‐3 C18 column using a isocratic mobile phase composed of 2 mm ammonium bicarbonate and acetonitrile (15:85, v /v). The precursor ion to product ion transitions for the enantiomers and internal standards were monitored in the multiple reaction monitoring and positive ionization mode using an API‐4000 mass spectrometer. The method was linear over the concentration range of 0.05–10.2 ng/mL for both enantiomers. The precision and accuracy results over five concentration levels in five different batches were well within the acceptance limits. The mean extraction recovery was >80% for both enantiomers. A variety of stability tests were executed in plasma and in neat samples, which complies with the FDA guidelines. After complete validation, the method was successfully applied to a pharmacokinetic study of a manidipine 20 mg oral dose in 10 healthy South India subjects under fasting conditions. The assay reproducibility is shown through incurred samples reanalysis of 20 subject plasma samples.  相似文献   

18.
A stereospecific high-performance liquid chromatographic assay was developed for the quantitation of ketoconazole enantiomers (KTZ) in rat plasma. After protein precipitation of 100 microL plasma using acetonitrile, a wash step was performed using hexane. The supernatant was removed and KTZ enantiomers and amiodarone, the internal standard, were extracted using liquid-liquid extraction with tert-butyl methyl ether. After transfer and evaporation of the organic layer, the residue was reconstituted in mobile phase and injected into the HPLC through a chiral column. The mobile phase consisted of hexane:ethanol:2-propanol with diethyl amine, pumped at 1.5 mL/min. All components eluted within 18 min. KTZ enantiomers were baseline resolved and peaks were symmetrical in appearance with no interferences. Calibration curves were linear over the range 62.5-5000 ng/mL of enantiomer. The intraday and interday CV% assessments were 相似文献   

19.
A novel chiral method was developed and validated to determine N‐acetyl‐glutamine (NAG) enantiomers by liquid chromatography–tandem mass spectrometry (LC–MS/MS). Enantioseparation was achieved on a Chiralpak QD‐AX column (150 × 4.6 mm i.d., 5 μm) using methanol–water (50 mm ammonium formate, pH 4.3; 70:30, v/v) at a flow rate of 500 μL/min. The detection was operated with an electrospray ionization source interface in positive mode. The ion transition for NAG enantiomers was m/z 189.0 → 130.0. The retention time of N‐acetyl‐l ‐glutamine and N‐acetyl‐d ‐glutamine were 15.2 and 17.0 min, respectively. Calibration curves were linear over the range of 0.02–20 μg/mL with r > 0.99. The deviation of accuracy and the coefficient of variation of within‐run and between‐run precision were within 10% for both enantiomers, except for the lower limit of quantification (20 ng/mL), where they deviated <15%. The recovery was >88% and no obvious matrix effect was observed. This method was successfully applied to investigate the plasma protein binding of NAG enantiomers in rats. The results showed that the plasma protein binding of NAG enantiomers was stereoselective. The assay method also exhibited good application prospects for the clinical monitoring of free drugs in plasma.  相似文献   

20.
A method for the quantitative enantioselective analysis of amphetamine in human plasma by gas chromatography/negative ion chemical ionization mass spectrometry (GC/NICI-MS) is presented. Five-fold deuterated analogues of both enantiomers were used as internal standard. Plasma sample preparation was performed by a rapid liquid-liquid extraction using n-hexane. Derivatization with (S)-(-)-N-(heptafluorobutyryl)prolyl chloride was accomplished directly in the n-hexane extract to avoid loss of amphetamine during sample concentration. The method was validated in the expected concentration range of 0.006 for a pharmacokinetic study. Calibration curves were linear within a range 0.006-50 ng/mL plasma. Precision and accuracy were acceptable over the entire calibration range. Baseline separation of the enantiomers was easily achieved on a 15-m nonchiral apolar column. The method is simple and robust, and has been applied to the batch analysis of amphetamine enantiomers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号