首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Physics letters. A》2001,278(4):184-190
We present results of computer simulations of the diffusion-limited reaction process A+B→0, on the line, under extreme drift conditions, for lattices of up to 227 sites, and where the process proceeds to completion (no particles left). These enormous simulations are made possible by the renormalized reaction-cell method (RRC). Our results allow us to resolve an existing controversy about the rate of growth of domain sizes, and about corrections to scaling of the concentration decay.  相似文献   

2.
The particle growth in plasma reactor were investigated by using the discrete-monodisperse (D-M) model for various process conditions. The monodisperse large sized particle distribution predicted by the D-M model are in good agreement with the large sized particles by the discrete-sectional model and also in the experiments by Shiratani et al. (1996). Some fractions of the small size particles are in a neutral state or even charged positively, but most of the large sized monodisperse particles are charged negatively. As the mass generation rate of monomers increases, the large sized particles grow more quickly and the production rate of nanoparticles of 100nm by plasma reactor increases. As the initial electron concentration or the monomer diameter increases, it takes longer time for the large sized particles to grow up to 100nm, but the large sized particle concentration of 100nm increases and the resulting production rate of large sized particles of 100nm increases. As the residence time increases, the time for the large sized particles to grow up to 100nm decreases and the large sized particle concentration of 100nm increases and, as a result, the production rate of large sized particles of 100nm increases. We propose that the plasma reactor can be a good candidate to produce monodisperse nanoparticles.  相似文献   

3.
We study the collision probability p of particles advected by open flows with chaotic advection. We show that p scales with the particle size (or, alternatively, reaction distance) δ as a power law whose coefficient is determined by the fractal dimensions of the invariant sets defined by the advection dynamics. We also argue that this same scaling also holds for the reaction rate of active particles in the low-density regime. These analytical results are compared to numerical simulations, and they are found to agree very well.  相似文献   

4.
通过实验和数值模拟方法,对微细颗粒(直径小于100 μm)碰撞规律进行研究.首先采用离散元模拟,基于改进的硬球模型,探索在流场作用下,微细颗粒的初始速度、表面能、尺寸、质量浓度和风速对微细颗粒之间的结合性碰撞及非结合性碰撞的影响,同时考虑微细颗粒团聚及沉降的物理运移过程,得出不同初始条件下微细颗粒碰撞频率的演化规律.最后进行物理实验,发现模拟得到的碰撞频率与实验得到的微细颗粒自沉降特征相一致.  相似文献   

5.
利用甲醇氧化烟气中NO的实验研究   总被引:3,自引:1,他引:2  
对利用甲醇氧化烟气中NO的反应开展了系统的实验研究。研究了反应时间、反应温度、甲醇用量比例、烟气中O2、SO2及夹带的固体颗粒对NO氧化率的影响。结果表明,在一定的条件下,甲醇能够氧化烟气中的NO;NO氧化率受反应时间和反应温度的综合影响,随着反应时间的增加,有效反应温度区域向低温方向移动,最大NO氧化率降低;随着甲醇用量比例的增加, NO氧化率增加;O2浓度增加可促进NO氧化;烟气中的SO2对反应有催化作用,可显著提高NO氧化率;烟气中固体颗粒的存在阻碍了自由基反应的进行,显著降低了NO的氧化率。  相似文献   

6.
7.
利用在EAS实验的模拟计算中被广泛采用的CORSIKA程序,基于强相互作用模型QGSJET和DPMJET,对甘巴拉山乳胶室实验高能族事例的产生特征进行了Monte Carlo模拟.给出了不同能区原初宇宙线各种成分产生族事例的效率及其与原初能量的关系.将模拟计算得到的族事例的平均横向扩展、族中簇射成员数、族的总观测能等的分布及其平均值,与相应的实验结果进行了系统的比较,结果基本相符.此外,模拟族事例也存在与实验相类似的能量集中趋势  相似文献   

8.
9.
Abstract

In this work the anomalous formation kinetics of old thermal donors (TD) observed in the initial stage of formation in pre-heat-treated carbon-rich samples are studied. Computer simulations applying a reaction scheme where the TD-complexes are subsequently formed by single oxygen diffusion reveal that the experimental results can only be acounted for if the pre-existing TD-core involves three oxygen atoms and has a concentration in the range 1013-1014 cm?3. Carbon is found to have a major influence on the production rate of pre-existing cores.  相似文献   

10.
The results of detailed kinetic simulations of the formation of soot particles in the pyrolysis of n-hexane–argon mixtures and in the oxidation of fuel-rich (φ = 5) n-heptane–oxygen–argon mixtures behind reflected shock waves at pressures of 20–100 bar and a constant concentration of carbon atoms or a constant fraction of argon in the initial mixture within the framework of a modified reaction mechanism are reported. The choice of n-hexane and n-heptane for examining the effect of pressure on the process of soot formation was motivated by the availability for these hydrocarbons of experimental measurements in reflected shock waves at high pressures (up to ~100 bar). The temperature dependences of the yield of soot particles formed in the pyrolysis of n-hexane are found to be very weakly dependent on pressure and slightly shifting to lower temperatures with increasing pressure. In general, pressure produces a very weak effect on the soot formation in the pyrolysis of n-hexane. The effect of pressure and concentration of carbon atoms in the initial mixture on the process of soot formation during the oxidation of fuel-rich n-heptane mixtures behind reflected shock waves is studied. The results of our kinetic simulations show that, for both the pyrolysis of n-hexane and the oxidation of fuel-rich n-heptane–oxygen mixtures, the influence of pressure on the process of soot formation is negligible. By contrast, the concentration of carbon atoms in the initial reaction mixture produces a much more pronounced effect.  相似文献   

11.
Recombination reactions of adsorbed particles on fractal and multifractal media are discussed within the framework of the random walk arguments. Theoretical results, which predict anomalous reaction orderX>2 in the low coverage regime, are checked by means of Monte Carlo simulations on two-dimensional structures and good agreement is found. Thermal desorption experiments on rough surfaces are simulated by studying temperature programmed reactions on fractal percolating clusters. For this case the simulations giveX≅2.5, i. e. the fractal reaction order is greater than the classical one (X=2). The influence of chemisorbed impurities (poison) on the recombination reaction is also studied and the reaction order is found to increase beyondX=2.5 when increasing the concentration of poison. Isothermal (recombination) desorption from energetically heterogeneous surfaces is simulated on two-dimensional substrata with multifractal distributions of activation energy of diffusion. For this caseX (withX>2) depends on the energetic heterogeneity of the substrata (X=2 for an homogeneous substratum). The obtained results point out that the fractal chemical kinetic behaviour is not only restricted to the low concentration regime, but it also covers the medium coverage regime, i.e. it holds for a monolayer surface coverageθ≦0.4 in fractal percolating clusters. Financially supported by the Consejo Nacional de Investigaciones Cientificas y Técnicas (CONICET) de la República Argentina  相似文献   

12.
利用发射光谱测量技术分析了介质阻挡放电等离子体激励空气产生的主要活性粒子,利用零维等离子体动力学模型模拟了甲烷/空气中放电阶段主要活性粒子的演化规律,并通过敏感性与化学路径分析研究了O原子影响甲烷点火过程的化学动力学机理。研究表明:空气中介质阻挡放电等离子体主要产生N2和O2的激发态粒子,激发态粒子的数密度随着电压的增加而增大;激发态粒子经过一系列物理化学反应最终转化成若干自由基,其中O原子的摩尔分数最大;O原子缩短甲烷点火延迟时间一个量级,原因在于添加O原子后甲基(CH3)的氧化途径由自点火过程中的经O2直接氧化为CH3O和CH2O转变为经HO2和O原子氧化为CH3O和CH2O,由于后者的基元反应速率快,因而明显缩短了点火延迟时间。  相似文献   

13.
In recent work, we presented evidence that site-diluted triangular central-force networks, at finite temperatures, have a nonzero shear modulus for all concentrations of particles above the geometric percolation concentration p(c). This is in contrast to the zero-temperature case where the (energetic) shear modulus vanishes at a concentration of particles p(r)>p(c). In the present paper we report on analogous simulations of bond-diluted triangular lattices, site-diluted square lattices, and site-diluted simple-cubic lattices. We again find that these systems are rigid for all p>p(c) and that near p(c) the shear modulus mu approximately (p-p(c))(f), where the exponent f approximately 1.3 for two-dimensional lattices and f approximately 2 for the simple-cubic case. These results support the conjecture of de Gennes that the diluted central-force network is in the same universality class as the random resistor network. We present approximate renormalization group calculations that also lead to this conclusion.  相似文献   

14.
The validity of the application of the dissipative particle dynamics (DPD) method to ferromagnetic colloidal dispersions has been investigated by conducting DPD simulations for a two–dimensional system. First, the interaction between dissipative and magnetic particles has been idealized as some model potentials, and DPD simulations have been carried out using such model potentials for a two magnetic particle system. In these simulations, attention has been focused on the collision time for the two particles approaching each other and touching from an initially separated position, and such collision time has been evaluated for various cases of mass and diameter of dissipative particles and model parameters, which are included in defining the equation of motion of dissipative particles. Next, a multi–particle system of magnetic particles has been treated, and particle aggregates have been evaluated, together with the pair correlation function along an applied magnetic field direction. Such characteristics of aggregate structures have been compared with the results of Monte Carlo and Brownian dynamics simulations in order to clarify the validity of the application of the DPD method to particle dispersion systems. The present simulation results have clearly shown that DPD simulations with the model interaction potential presented here give rise to physically reasonable aggregate structures under circumstances of strong magnetic particle–particle interactions as well as a strong external magnetic field, since these aggregate structures are in good agreement with those of Monte Carlo and Brownian dynamics simulations.  相似文献   

15.
A linear-scaling algorithm based on a divide-and-conquer (DC) scheme is designed to perform large-scale molecular-dynamics simulations, in which interatomic forces are computed quantum mechanically in the framework of the density functional theory (DFT). This scheme is applied to the thermite reaction at an Al/Fe2O3 interface. It is found that mass diffusion and reaction rate at the interface are enhanced by a concerted metal-oxygen flip mechanism. Preliminary simulations are carried out for an aluminum particle in water based on the conventional DFT, as a target system for large-scale DC-DFT simulations. A pair of Lewis acid and base sites on the aluminum surface preferentially catalyzes hydrogen production in a low activation-barrier mechanism found in the simulations.  相似文献   

16.
Clustering (or preferential concentration) of inertial particles suspended in a homogeneous, isotropic turbulent flow is strongly influenced by the smallest scales of the turbulence. In particle-laden large-eddy simulations (LES) of turbulence, these small scales are not captured by the grid and hence their effect on particle motion needs to be modelled. In this paper, we use a subgrid model based on kinematic simulations of turbulence (Kinematic Simulation based SubGrid Model or KSSGM), for the first time in the context of predicting the clustering and the relative velocity statistics of inertial particles. This initial study focuses on the special case of inertial particles in the absence of gravitational settling. We show that the KSSGM gives excellent predictions for clustering in a priori tests for inertial particles with St ≥ 2.0, where St is the Stokes number, defined as the ratio of the particle response time to the Kolmogorov time-scale. To the best of our knowledge, the KSSGM represents the first model that has been shown to capture the effect of the subgrid scales on inertial particle clustering for St ≥ 2.0. We also show that the mean inward radial relative velocity between inertial particles (?wr?(?), which enters into the formula for the collision kernel) is accurately predicted by the KSSGM for all St. We explain why the model captures clustering at higher St?but not for lower St?, and provide new insights into the key statistical parameters of turbulence that a subgrid model would have to describe, in order to accurately predict clustering of low-St?particles in an LES.  相似文献   

17.
Sonochemical-assisted synthesis of nano-structured lead dioxide   总被引:1,自引:0,他引:1  
PbO(2) nano-powder was synthesized by the ultrasonic irradiation of an aqueous suspension of dispersed beta-PbO, as precursor, in the presence of ammonium peroxydisulfate as an oxidant. The reaction rate increased with an increase in temperature and ammonium peroxydisulfate concentration. In the presence of ammonium peroxydisulfate, the increased concentration of hydroxyl radical facilitated the oxidation of beta-PbO to PbO(2) under ultrasonic irradiation. The PbO(2) nano-powder was characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). It was found that the applied ultrasonic wave determines the particle size. PbO(2) samples prepared under optimized experimental conditions have lead dioxide particles in the range of 50-100 nm, as shown by SEM. The XRD results reveal that only beta-PbO(2) is formed under optimum conditions. When the reaction mixture was stirred instead of ultrasonically irradiated, only a fraction of the lead oxide was converted to lead dioxide, and lead sulfate was the main reaction product.  相似文献   

18.
通过自制的烟雾腔系统研究羟基启动的异戊二烯光解形成二次有机气溶胶(SOA)过程中环境因素的影响.使用气溶胶粒径光谱仪测量了SOA的粒径分布,通过光解实验研究了光照时间、反应物浓度以及CH3ONO浓度对异戊二烯光解形成SOA的影响.结果表明,异戊二烯光解形成的SOA空气动力学直径在0.4 mm~1.4 mm之间,这些粒子的直径小于2.5μm的微细粒子很容易沉积在人体肺泡内,对人体健康产生很大危害;不管是SOA粒子的粒子数浓度还是质量数浓度都随着反应时间的增长、光照强度的增强和反应物浓度的增加而增加.该研究为大气颗粒物排放源的外场测量提供了非常有用的信息.  相似文献   

19.
加速器驱动次临界系统(ADS) 液态Pb-Bi 散裂靶的设计中,需要可靠的理论计算工具精确地预言几个GeV 能量范围的质子引起的散裂反应产生的各种粒子和核素。利用蒙特卡罗模拟软件包Geant4 计算研究了800 MeV至3 GeV 质子入射铅、铋材料引起的中子产生双微分截面。比较了Geant4 不同物理模型得到的模拟结果与现有的实验数据。其中,Geant4 的QGSP BERT和QGSP INCL ABLA 物理模型模拟结果很好地再现了实验数据。本工作证实了Geant4 蒙特卡罗模拟软件包适合用于能量高达3 GeV 的质子入射铅、铋引起的中子产生双微分截面的模拟计算。A detailed design of the liquid Pb-Bi spallation target of the Accelerator Driven Systems (ADS) requires powerful and reliable computational tools that can accurately predict particles and nuclides production by the proton induced spallation reactions in the energy range of a few GeV. In this paper, the neutron production double-differential cross sections for Pb and Bi target materials at incident proton kinetic energies between 800 MeV and 3 GeV are studied by calculations with Monte Carlo simulation package Geant4. The simulated results of Geant4 with several physics models are compared with available experimental data. The simulated results generated by QGSP BERT and QGSP INCL ABLA physics models of Geant4 well reproduce the available experimental data. The present results validated that Geant4 Monte Carlo simulation package is suitable for simulations of neutron production double-differential cross sections of proton induced reaction on Pb and Bi targets in the incident energy range up to 3 GeV.  相似文献   

20.
The energetic-particle-induced geodesic acoustic mode(EGAM) is studied using gyrokinetic particle simulations in tokamak plasmas.In our simulations,exponentially growing EGAMs are excited by energetic particles with a slowing-down distribution.The frequencies of EGAMs are always below the frequencies of GAMs,which is due to the non-perturbative contribution of energetic particles(EPs).The mode structures of EGAMs are similar to the corresponding mode structures of GAMs.Our gyrokinetic simulations show that a high EP density can enhance the EGAM growth rate,due to high EP free energy,and that EPs' temperature and the pitch angle of the distribution modify the EGAM frequency/growth rate by means of the resonance condition.Kinetic effects of the thermal electrons barely change the EGAM frequency,and have a weak damping effect on the EGAM.Benchmarks between the gyrokinetic particle simulations and a local EGAM dispersion relation exhibit good agreement in terms of EGAM frequency and growth rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号