首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The spectra and kinetics of photoluminescence from multilayered structures of quasi-ordered silicon nanocrystals in a silica matrix were studied for undoped samples and samples doped with erbium. It was shown that the optical excitation energy of silicon nanocrystals could be effectively transferred to Er3+ ions, which was followed by luminescence at a wavelength of 1.5 µm. The effectiveness of energy transfer increased as the size of silicon nanocrystals decreased and the energy of exciting light quanta increased. The excitation of erbium luminescence in the structures was explained based on dipole-dipole interaction (the Förster mechanism) between excitons in silicon nanocrystals and Er3+ ions in silica surrounding them.  相似文献   

2.
The photoluminescence (PL) spectra and kinetics of erbium-doped layers of silicon nanocrystals dispersed in a silicon dioxide matrix (nc-Si/SiO2) are studied. It was found that optical excitation of nc-Si can be transferred with a high efficiency to Er3+ ions present in the surrounding oxide. The efficiency of energy transfer increases with increasing pumping photon energy and intensity. The process of Er3+ excitation is shown to compete successfully with nonradiative recombination in the nc-Si/SiO2 structures. The Er3+ PL lifetime was found to decrease under intense optical pumping, which implies the establishment of inverse population in the Er3+ system. The results obtained demonstrate the very high potential of erbium-doped nc-Si/SiO2 structures when used as active media for optical amplifiers and light-emitting devices operating at a wavelength of 1.5 μm.  相似文献   

3.
Undoped and Er3+-doped glass–ceramics of composition (100−x)SiO2–xSnO2, with x = 5 or 10 and with 0.4 or 0.8 mol% of Er3+ ions, were synthesised by thermal treatment of precursor sol–gel glasses. Structural studies were developed by X-Ray Diffraction. Wide band gap SnO2 semiconductor quantum-dots embedded in the insulator SiO2 glass are obtained. The mean radius of the SnO2 nanocrystals, ranging from 2 to 3.2 nm, is comparable to the exciton Bohr radius. The luminescence properties have been analysed as a function of sample composition and thermal treatment. The results show that Er3+ ions are partially partitioned into the nanocrystalline phase. An efficient UV excitation of the Er3+ ions by energy transfer from the SnO2 nanocrystal host is observed. The Er3+ ions located in the SnO2 nanocrystals are selectively excited by this energy transfer mechanism. On the other hand, emission from the Er3+ ions remaining in the silica glassy phase is obtained by direct excitation of these ions.  相似文献   

4.
The photoluminescence of Er3+ ions in a SiO2 matrix containing silicon nanocrystals 3.5 nm in diameter is studied under resonant and nonresonant pulsed pumping with pulses 5 ns in duration. The effective erbium excitation cross section under pulsed pumping, σeff = 8.7 × 10?17 cm2, is close to that for nanocrystals. Comparison of the erbium photoluminescence intensity obtained for a SiO2 matrix with and without nanocrystals made it possible to determine the absolute concentration of optically active nanocrystals capable of exciting erbium ions, the concentration of optically active erbium, and the average number of erbium ions excited by one nanocrystal. The study revealed that excitation transfer from one erbium ion to another is a relatively slow process, which accounts for the low efficiency of erbium ion excitation under pulsed pumping in a SiO2 matrix containing silicon nanocrystals.  相似文献   

5.
Population inversion of the energy levels of Er3+ ions in Si/Si1?xGex:Er/Si (x = 0.28) structures has been achieved due to electron excitation transfer from the semiconductor matrix. An analysis of the photoluminescence kinetics at a wavelength of 1.54 μm shows that up to 80% of the Er3+ ions are converted into excited states. This effect, together with the high photoluminescence intensity observed in the structures studied, shows good prospects for obtaining lasers compatible with planar silicon technology.  相似文献   

6.
The Stark splitting of the energy levels of Er3+ ions implanted in a structure made up of alternating layers of silicon dioxide and quasi-ordered silicon nanocrystals is calculated. The level splitting is caused by the electric field of the image charges induced at the interfaces between layers with different permittivities. The splitting was established to increase as the contrast in permittivity between the silicon dioxide and silicon nanocrystal layers increases, as well as when the erbium ions approach the layer interface. The results obtained offer an adequate explanation of the experimentally observed additional broadening of the erbium photoluminescence band (0.8 eV) with increasing characteristic size of the silicon nanocrystals.  相似文献   

7.
Wide band gap Yb3+ and Er3+ codoped ZrO2 nanocrystals have been synthesized by a modified sol-gel method. Under 967 nm excitation strong green and red upconversion emission is observed for several Er3+ to Yb3+ ions concentration ratios. A simple microscopic rate equation model is used to study the effects of non-radiative direct Yb3+ to Er3+ energy transfer processes on the visible and near infrared fluorescence decay trends of both Er3+ and Yb3+ ions. The microscopic rate equation model takes into account the crystalline phase as well as the size of nanocrystals. Nanocrystals phase and size were estimated from XRD patterns. The rate equation model succeeds to fit simultaneously all visible and near infrared fluorescence decay profiles. The dipole-dipole interaction parameters that drive the non-radiative energy transfer processes depend on doping concentration due to crystallite phase changes. In addition the non-radiative relaxation rate (4I11/24I13/2) is found to be greater than that estimated by the Judd-Ofelt parameters due to the action of surface impurities. Results suggest that non-radiative direct Yb3+ to Er3+ energy transfer processes in ZrO2:Yb,Er are extremely efficient.  相似文献   

8.
Color controllable Er3+/Yb3+‐codoped La2MoO6 upconverting nanocrystals are successfully synthesized via a facile sol‐gel method. Under the irradiation of 980 nm light, the entire samples exhibit dazzling upconversion (UC) emissions arising from the intra‐4f transitions of Er3+ ions and the UC emission intensity is strongly dependent on the Yb3+ ion concentration. Moreover, by controlling the Yb3+ ion concentration, the emission color is changed from green to yellow and finally to red as a result of the energy back transfer from Er3+ to Yb3+ ions, which is further verified by the theoretically discussion based on the steady‐state rate expressions. The optical thermometric properties of the prepared nanocrystals based on the (2H11/2,4S3/2) thermally coupled levels of Er3+ ions are systematically studied by analyzing the temperature‐dependent green UC emission spectra in the range of 303–663 K. The maximum sensor sensitivity of resultant nanocrystals is determined to be 0.0083 K−1 at 510 K. Furthermore, the emitting color of the synthesized nanocrystals relies on the temperature. In addition, the heating effect induced by the excitation pump power is also investigated and the host lattice temperature is enhanced from 319 to 404 K with raising the pump power from 159 to 757 mW.  相似文献   

9.
10.
We have investigated excitation of Er3+ ions via energy transfer from Si nanocrystallites embedded in SiO2 films. The Er-doped films were fabricated using a laser ablation technique. We found that a photoluminescence (PL) excitation spectra of Er3+ ions coincides with that of Si nanocrystallites. Thus, it is evident that Er3+ ions are excited via the luminescent singlet state in Si nanocrystallites. Furthermore, we obtained the results that support the energy transfer mechanism. PL intensity of Er3+ ions increases with Er concentration while that of Si nanocrystallites decrease inversely. PL intensity of Er3+ ions increases with temperature from cryogenic to room temperature under photo-excitation at power density higher than 110 mW/cm2. The increase is characteristic of the luminescent state in Si nanocrystallites but not any state in Er3+ ions. PACS 61.72.Ww; 61.46.+w; 81.15Fg  相似文献   

11.
The upconversion luminescence spectral intensity of Er3+ in Er3+ and Yb3+ codoped ZnO nanocrystals with and without Li+ are investigated. Yb3+ ions as a tradition sensibilizer have efficient energy transfer processes from Yb3+ (2F5/2) to Er3+ (4I13/2, 4I11/2, 4F9/2), which lead to the increment of upconversion luminescence intensity. Following by adding Li+ to the Er3+ and Yb3+ codoped ZnO nanocrystals, the upconversion intensity emitted by Er3+ ions is found greatly enhanced. The enhancement is attributed to the distortion of the local field symmetry of Er3+ ions, so increases various intra-4f transitions of Er3+ ions. Both Yb3+ and Li+ can disperse Er3+ ions in specimen, so reduced the interaction between neighboring Er3+ ions.  相似文献   

12.
Morphology impact on the upconverted luminescence of ZnO:Er3+ nanocrystals was studied with controllable morphology of nanorod, prickly sphere-like, column-like, branch rod, prism-like, and grain-like, prepared via the cetyltrimethylammonium bromide (CTAB)-assisted hydrothermal process. The upconversion emission of Er3+ with 980 nm excitation demonstrated morphology sensitivity which was related with the local environments of Er3+ ions in ZnO and doping efficiency. Under ultraviolet (UV) direct excitation, where exciton and defect emissions of ZnO appeared, morphology sensitivity was discussed in terms of surface-to-volume ratios.  相似文献   

13.
Upconversion luminescence has been studied for Er3+ in a germanate-oxyfluoride and a tellurium-germanate-oxyfluoride transparent glass-ceramic using 800 nm excitation. Significantly increased upconversion luminescence was observed from transparent glass-ceramics compared with that from their corresponding as-prepared glasses. In addition to a strong green emission centered at 545 nm from 4S3/2 state and a weaker red emission centered at 662 nm from 4F9/2 state generally seen from Er3+-doped glasses, a violet emission centered at 410 nm from 2H9/2 state and a near-ultra-violet emission centered at 379 nm from 4G11/2 state were also observed from transparent glass-ceramics. The upconversion luminescence of Er3+ ions in transparent glass-ceramics revealed sharp Stark-splitting peaks generally seen in a crystal host. The increased upconversion efficiency is attributed to the decreased effective phonon energy and the increased energy transfer between excited ions when Er3+ ions were incorporated into the precipitated β-PbF2 nanocrystals.  相似文献   

14.
Transients of the photoluminescence (1.54 μm) of Er3+ ions embedded in an amorphous silicon matrix excited with intensive laser pulses are simulated using a phenomenological model which takes into account both the defect-related excitation mechanism and stimulated optical transitions in the ions. The simulated transients are compared with the experimental ones observed in Er-doped amorphous silicon layers under pulsed laser excitation. The modeling and the experimental results demonstrate a possibility to realize a regime of superradiance in the system of Er3+ ions pumped via an electronic excitation of the amorphous matrix. Received: 7 August 2001 / Revised version: 1 November 2001 / Published online: 17 January 2002  相似文献   

15.
郑海兴  吴光照  干福熹 《物理学报》1985,34(12):1582-1594
测定了氟化物、氟磷酸盐和磷酸盐玻璃中Er3+离子的吸收、荧光和激发光谱,解释了基质玻璃对Er3+离子发光的影响。进一步研究了在这三种基质玻璃中Er3+离子发光的浓度效应和温度效应,讨论了Er3+离子内和离子间的能量转移过程。 关键词:  相似文献   

16.
This paper reports the results obtained in strontium barium niobate (SBN) nanocrystals in glasses doped with 1, 2.5 and 5 mol% of Er3+ ions. The melt-quenching method was applied to fabricate the glasses with composition SrO–BaO–Nb2O5–B2O3 and further thermal treatment was used to obtain glass ceramic samples from the glass precursor. X-ray diffraction patterns confirmed the formation of SBN nanocrystals with an average size of about 50 nm in diameter. Time-resolved fluorescence spectra for the emission of Er3+ ions at 1550 nm have been analyzed in order to confirm the incorporation of the Er3+ ions into the nanocrystals. Green frequency upconversion emission under excitation at 975 nm coming from the ions in the nanocrystals has been obtained. This intense upconversion is about a factor of 500 higher than that obtained from the ions which reside in the glassy phase. Moreover, temporal evolution studies have been carried out with the purpose of determining the involved upconversion mechanism and the importance of these processes as a source of losses for the optical amplification at 1550 nm.  相似文献   

17.
J. Wang  X. Qiao  M. Wang 《哲学杂志》2013,93(32):3755-3766
Er3+–Yb3+ co-doped glasses and glass ceramics containing LaF3 nanocrystals were prepared and their absorption spectra obtained. The Judd–Ofelt parameters Ω t (t?=?2,?4,?6) for f–f transition of Er3+, as well as spontaneous emission probabilities, branching ratios and radiative lifetimes for stimulated emission of each band were determined. Addition of Er3+ and Yb3+ ions into low-phonon energy LaF3 nanocrystals makes the upconversion emission of Er3+–Yb3+ co-doped glass ceramic much stronger than that of Er3+–Yb3+ co-doped glass.  相似文献   

18.
We prepared Er3+ doped and Er3+/Yb3+ codoped Sb2O4 nanocrystals by the sol-gel method. The Raman, X-ray diffraction (XRD), transmission electron microscope (TEM), and photoluminescence spectra of the samples were studied. The phonon energy of the Sb2O4 nanocrystals is very low (the maximum value being 461 cm−1). The upconversion (UC) red emission of the Er3+/Yb3+ codoped sample is very strong at 975 nm laser diode excitation. The Sb2O4 nanocrystals will be a promising luminous material.  相似文献   

19.
A series of Si: Er electroluminescent diode structures is fabricated by sublimation molecular-beam epitaxy. The diode structures efficiently emit at a wavelength of 1.5 μm under conditions of p-n junction breakdown at room temperature. The effective cross section of excitation of Er3+ ions with hot carriers heated by the electric field of a reverse-biased p-n junction and the lifetime of Er3+ ions in the first excited state 4I13/2 are determined for structures that emit in a mixed breakdown mode and are characterized by the maximum intensity and excitation efficiency of the Er3+ electroluminescence.  相似文献   

20.
The phosphors, Bi3+- activated Gd2O3:Er3+, were prepared by sol-gel combustion method, and their photoluminescent properties were investigated under ultraviolet light excitation. The emission spectrum exhibited sharp peaks at about 520, 535, 545, 550 and 559 nm due to (2H11/2, 4S3/2)→4I15/2 transitions of Er3+ ions. The luminescent intensity was remarkably improved by the incorporation of Bi3+ ions under 340 nm light excitation, which suggested very efficient energy transfer from Bi3+ ions to Er3+ions. The introducing of Bi3+ ions broadened the excitation band of the phosphor, of which a new strong peak occurred ranging from 320 to 360 nm due to the 6s2→6s6p transition of Bi3+ ions. There is significant energy overlap between the emission band of Bi3+ ions and the excitation band of Er3+ ions. Under 340 nm light excitation, Bi3+ absorbed most of the energy and transferred it to Er3+. The energy transfer probability from Bi3+ to Er3+ is strongly dependent on the Bi3+ ion concentration. Also, the sensitization effectiveness was studied and discussed in this paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号