首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hybrid models have found widespread applications for simulation of wall‐bounded flows at high Reynolds numbers. Typically, these models employ Reynolds‐averaged Navier–Stokes (RANS) and large eddy simulation (LES) in the near‐body and off‐body regions, respectively. A number of coupling strategies between the RANS and LES regions have been proposed, tested, and applied in the literature with varying degree of success. Linear eddy‐viscosity models (LEVM) are often used for the closure of turbulent stress tensor in RANS and LES regions. LEVM incorrectly predicts the anisotropy of Reynolds normal stress at the RANS‐LES interface region. To overcome this issue, use of non‐linear eddy‐viscosity models (NLEVM) have started receiving attention. In this study, a generic non‐linear blended modeling framework for performing hybrid simulations is proposed. Flow over the periodic hills is used as the test case for model evaluation. This case is chosen due to complex flow physics with simplified geometry. Analysis of the simulations suggests that the non‐linear hybrid models show a better performance than linear hybrid models. It is also observed that the non‐linear closures are less sensitive to the RANS‐LES coupling and grid resolution. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
We present an original timesaving joint RANS/LES approach to simulate turbulent premixed combustion. It is intended mainly for industrial applications where LES may not be practical. It is based on successive RANS/LES numerical modelling, where turbulent characteristics determined from RANS simulations are used in LES equations for estimation of the subgrid chemical source and viscosity. This approach has been developed using our TFC premixed combustion model, which is based on a generalization of the Kolmogorov’s ideas. We assume existence of small-scale statistically equilibrium structures not only of turbulence but also of the reaction zones. At the same time, non-equilibrium large-scale structures of reaction sheets and turbulent eddies are described statistically by model combustion and turbulence equations in RANS simulations or follow directly without modelling in LES. Assumption of small-scale equilibrium gives an opportunity to express the mean combustion rate (controlled by small-scale coupling of turbulence and chemistry) in the RANS and LES sub-problems in terms of integral or subgrid parameters of turbulence and the chemical time, i.e. the definition of the reaction rate is similar to that of the mean dissipation rate in turbulence models where it is expressed in terms of integral or subgrid turbulent parameters. Our approach therefore renders compatible the combustion and turbulent parts of the RANS and LES sub-problems and yields reasonable agreement between the RANS and averaged LES results. Combining RANS simulations of averaged fields with LES method (and especially coupled and acoustic codes) for simulation of corresponding nonstationary process (and unsteady combustion regimes) is a promising strategy for industrial applications. In this work we present results of simulations carried out employing the joint RANS/LES approach for three examples: High velocity premixed combustion in a channel, combustion in the shear flow behind an obstacle and the impinging flame (a premixed flame attached to an obstacle).  相似文献   

3.
A numerical investigation of the behaviour of a cavitation pocket developing along a Venturi geometry has been performed using a compressible one-fluid hybrid RANS/LES solver. The interplay between turbulence and cavitation regarding the unsteadiness and structure of the flow is complex and not well understood. This constitutes a determinant point to accurately simulate the dynamic of sheet cavities. Various turbulent approaches are tested: a new Scale-Adaptive model and the Detached Eddy Simulation. 2D and 3D simulations are compared with the experimental data. An oblique mode of the sheet is put in evidence.  相似文献   

4.
In order to reduce the high computational effort of wall-resolved large-eddy simulations (LES), the present paper suggests a hybrid LES–RANS approach which splits up the simulation into a near-wall RANS part and an outer LES part. Generally, RANS is adequate for attached boundary layers requiring reasonable CPU-time and memory, where LES can also be applied but demands extremely large resources. Contrarily, RANS often fails in flows with massive separation or large-scale vortical structures. Here, LES is without a doubt the best choice. The basic concept of hybrid methods is to combine the advantages of both approaches yielding a prediction method, which, on the one hand, assures reliable results for complex turbulent flows, including large-scale flow phenomena and massive separation, but, on the other hand, consumes much fewer resources than LES, especially for high Reynolds number flows encountered in technical applications. In the present study, a non-zonal hybrid technique is considered (according to the signification retained by the authors concerning the terms zonal and non-zonal), which leads to an approach where the suitable simulation technique is chosen more or less automatically. For this purpose the hybrid approach proposed relies on a unique modeling concept. In the LES mode a subgrid-scale model based on a one-equation model for the subgrid-scale turbulent kinetic energy is applied, where the length scale is defined by the filter width. For the viscosity-affected near-wall RANS mode the one-equation model proposed by Rodi et al. (J Fluids Eng 115:196–205, 1993) is used, which is based on the wall-normal velocity fluctuations as the velocity scale and algebraic relations for the length scales. Although the idea of combined LES–RANS methods is not new, a variety of open questions still has to be answered. This includes, in particular, the demand for appropriate coupling techniques between LES and RANS, adaptive control mechanisms, and proper subgrid-scale and RANS models. Here, in addition to the study on the behavior of the suggested hybrid LES–RANS approach, special emphasis is put on the investigation of suitable interface criteria and the adjustment of the RANS model. To investigate these issues, two different test cases are considered. Besides the standard plane channel flow test case, the flow over a periodic arrangement of hills is studied in detail. This test case includes a pressure-induced flow separation and subsequent reattachment. In comparison with a wall-resolved LES prediction encouraging results are achieved.   相似文献   

5.
In this study, we proposed an idea for an advanced switching parameter used in a hybrid approach connecting large eddy simulation (LES) with Reynolds-averaged Navier–Stokes modeling [the hybrid LES/RANS (HLR) model]. Although the HLR model is promising way to predict engineering turbulent flows, an important problem is that RANS is always adopted in the near-wall region, even if the grid resolution is fine enough for LES. To overcome this difficulty, the switching parameter proposed here introduced knowledge of the Kolmogorov microscale that is thought to be reasonable for representing the near-wall turbulence. This parameter enabled the present HLR model to be smoothly replaced by a full LES if a grid resolution was fine enough in the near-wall region. To confirm model performance, the present HLR model was applied to numerical simulations of a periodic hill flow as well as fundamental plane channel flows. The model generally provided reasonable predictions for these test cases that include complex turbulence with massive flow separation.  相似文献   

6.
Hybrid approach combining large eddy simulation (LES) with the Reynolds-averaged Navier–Stokes equation (RANS) is expected to accurately simulate wall-bounded turbulent flows at high Reynolds numbers. As an important issue in developing hybrid methods, it is known that the log layers in the RANS and LES regions are not lined up in hybrid RANS/LES simulations of channel flow. Although several methods including additional filtering near the RANS/LES interface have been proposed to eliminate the log-layer mismatch, there is no obvious physical justification for the methods and some ad hoc tuning is necessary. In this work, the commutation error terms in the filtered velocity equations are investigated to justify the method of additional filtering. It is shown that the additional filtering can be considered as a finite difference approximation to extra terms due to the non-commutivity between the hybrid filter and the spatial derivative. Moreover, an expression determining the filter width and its location for the additional filtering is obtained. To validate the expression, a hybrid simulation of channel flow is carried out. The additional filtering with the filter width derived is shown to be effective in eliminating the log-layer mismatch and improving the mean velocity profile.  相似文献   

7.
Large-eddy simulations (LES) still suffer from extremely large resources required for the resolution of the near-wall region, especially for high-Re flows. That is the main motivation for setting up hybrid LES–RANS methods. Meanwhile a variety of different hybrid concepts were proposed mostly relying on linear eddy-viscosity models. In the present study a hybrid approach based on an explicit algebraic Reynolds stress model (EARSM) is suggested. The model is applied in the RANS mode with the aim of accounting for the Reynolds stress anisotropy emerging especially in the near-wall region. For the implementation into a CFD code this anisotropy-resolving closure can be formally expressed in terms of a non-linear eddy-viscosity model (NLEVM). Its extra computational effort is small, still requiring solely the solution of one additional transport equation for the turbulent kinetic energy. In addition to this EARSM approach, a linear eddy-viscosity model (LEVM) is used in order to verify and emphasize the advantages of the non-linear model. In the present formulation the predefinition of RANS and LES regions is avoided and a gradual transition between both methods is assured. A dynamic interface criterion is suggested which relies on the modeled turbulent kinetic energy and the wall distance and thus automatically accounts for the characteristic properties of the flow. Furthermore, an enhanced version guaranteeing a sharp interface is proposed. The interface behavior is thoroughly investigated and it is shown how the method reacts on dynamic variations of the flow field. Both model variants, i.e. LEVM and EARSM, have been tested on the basis of the standard plane channel flow and even more detailed on the flow over a periodic arrangement of hills using fine and coarse grids.  相似文献   

8.
Towards a Unified Turbulence Simulation Approach for Wall-Bounded Flows   总被引:1,自引:0,他引:1  
A hybrid Reynolds-averaged Navier–Stokes/Large-Eddy Simulation (RANS/LES) methodology has received considerable attention in recent years, especially in its application to wall-bounded flows at high-Reynolds numbers. In the conventional zonal hybrid approach, eddy-viscosity-type RANS and subgrid scale models are applied in the RANS and LES zones, respectively. In contrast, the non-zonal hybrid approach uses only a generalized turbulence model, which provides a unified simulation approach that spans the continuous spectrum of modeling/simulation schemes from RANS to LES. A particular realization of the non-zonal approach, known as partially resolved numerical simulation (PRNS), uses a generalized turbulence model obtained from a rescaling of a conventional RANS model through the introduction of a resolution control function F R , where F R is used to characterize the degree of modeling required to represent the unresolved scales of turbulent motion. A new generalized functional form for F R in PRNS is proposed in this study, and its performance is compared with unsteady RANS (URANS) and LES computations for attached and separated wall-bounded turbulent flows. It is demonstrated that PRNS behaves similarly to LES, but outperforms URANS in general.  相似文献   

9.
This paper describes some significant steps made towards the numerical simulation of the noise radiated by the high-lift devices of a plane. Since the full numerical simulation of such configuration is still out of reach for present supercomputers, some hybrid strategies have been developed to reduce the overall cost of such simulations. The proposed strategy relies on the coupling of an unsteady nearfield CFD with an acoustic propagation solver based on the resolution of the Euler equations for midfield propagation in an inhomogeneous field, and the use of an integral solver for farfield acoustic predictions.In the first part of this paper, this CFD/CAA coupling strategy is presented. In particular, the numerical method used in the propagation solver is detailed, and two applications of this coupling method to the numerical prediction of the aerodynamic noise of an airfoil are presented.Then, a hybrid RANS/LES method is proposed in order to perform some unsteady simulations of complex noise sources. This method allows for significant reduction of the cost of such a simulation by considerably reducing the extent of the LES zone. This method is described and some results of the numerical simulation of the three-dimensional unsteady flow in the slat cove of a high-lift profile are presented. While these results remain very difficult to validate with experiments on similar configurations, they represent up to now the first 3D computations of this kind of flow.  相似文献   

10.
A hybrid method combining large eddy simulation (LES) with the Reynolds-averaged Navier-Stokes (RANS) equation is used to simulate a turbulent channel flow at high Reynolds number. It is known that the mean velocity profile has a mismatch between the RANS and LES regions in hybrid simulations of a channel flow. The velocity mismatch is reproduced and its dependence on the location of the RANS/LES interface and on the type of RANS model is examined in order to better understand its properties. To remove the mismatch and to obtain better velocity profiles, additional filtering is applied to the velocity components in the wall-parallel planes near the interface. The additional filtering was previously introduced to simulate a channel flow at low Reynolds number. It is shown that the filtering is effective in reducing the mismatch even at high Reynolds number. Profiles of the velocity fluctuations of runs with and without the additional filtering are examined to help understand the reason for the mismatch. Due to the additional filtering, the wall-normal velocity fluctuation increases at the bottom of the LES region. The resulting velocity field creates the grid-scale shear stress more efficiently, and an overestimate of the velocity gradient is removed. The dependence of the velocity profile on the grid point number is also investigated. It is found that the velocity gradient in the core region is underestimated in the case of a coarse grid. Attention should be paid not only to the velocity mismatch near the interface but also to the velocity profile in the core region in hybrid simulations of a channel flow at high Reynolds number. PACS47.27.Eq; 47.27.Nz; 47.60.+i  相似文献   

11.
12.
A strategy which blends a variational multiscale large eddy simulation (VMS-LES) model and a RANS model in a hybrid approach is investigated. A smooth blending function, which is based on the value of a blending parameter, is used for switching from VMS-LES to RANS. Different definitions of the blending parameter are investigated. The capabilities of the novel hybrid approach are appraised in the simulation of the flow around a circular cylinder at a Reynolds number 1.4×105, based on the freestream velocity and on the cylinder diameter, in the presence of turbulent boundary-layer due to turbulent inflow conditions. A second study at Reynolds numbers from Re=6.7×105 to 1.25×106 is also presented. The effect of using the VMS-LES approach in the hybrid model is evaluated. Results are compared to those of other RANS, LES and hybrid simulations in the literature and with experimental data  相似文献   

13.
The partially integrated transport modelling (PITM) method can be viewed as a continuous approach for hybrid RANS/LES modelling allowing seamless coupling between the RANS and the LES regions. The subgrid turbulence quantities are thus calculated from spectral equations depending on the varying spectral cutoff location [Schiestel, R., Dejoan, A., 2005. Towards a new partially integrated transport model for coarse grid and unsteady turbulent flow simulations. Theoretical and Computational Fluid Dynamics 18, 443–468; Chaouat, B., Schiestel, R., 2005. A new partially integrated transport model for subgrid-scale stresses and dissipation rate for turbulent developing flows. Physics of Fluids, 17 (6)] The PITM method can be applied to almost all statistical models to derive its hybrid LES counterpart. In the present work, the PITM version based on the transport equations for the turbulent Reynolds stresses together with the dissipation transport rate equation is now developed in a general formulation based on a new accurate energy spectrum function E(κ) valid in both large and small eddy ranges that allows to calibrate more precisely the csgs2 function involved in the subgrid dissipation rate sgs transport equation. The model is also proposed here in an extended form which remains valid in low Reynolds number turbulent flows. This is achieved by considering a characteristic turbulence length-scale based on the total turbulent energy and the total dissipation rate taking into account the subgrid and resolved parts of the dissipation rate. These improvements allow to consider a large range of flows including various free flows as well as bounded flows. The present model is first tested on the decay of homogeneous isotropic turbulence by referring to the well known experiment of Comte-Bellot and Corrsin. Then, initial perturbed spectra E(κ) with a peak or a defect of energy are considered for analysing the model capabilities in strong non-equilibrium flow situations. The second test case is the classical fully turbulent channel flow that allows to assess the performance of the model in non-homogeneous flows characterised by important anisotropy effects. Different simulations are performed on coarse and refined meshes for checking the grid independence of solutions as well as the consistency of the subgrid-scale model when the filter width is changed. A special attention is devoted to the sharing out of the energy between the subgrid-scales and the resolved scales. Both the mean velocity and the turbulent stress computations are compared with data from direct numerical simulations.  相似文献   

14.
Xiao and Jenny (2012) proposed an interesting hybrid LES/RANS method in which they use two solvers and solve the RANS and LES equations in the entire computational domain. In the present work this method is simplified and used as a hybrid RANS-LES method, a wall-modeled LES. The two solvers are employed in the entire domain. Near the walls, the flow is governed by the steady RANS solver; drift terms are added to the DES equations to ensure that the time-averaged DES fields agree with the steady RANS field. Away from the walls, the flow is governed by the DES solver; in this region, the RANS field is set to the time-averaged LES field. The disadvantage of traditional DES models is that the RANS models in the near-wall region – which originally were developed and tuned for steady RANS – are used as URANS models where a large part of the turbulence is resolved. In the present method – where steady RANS is used in the near-wall region – the RANS turbulence models are used in a context for which they were developed. In standard DES methods, the near-wall accuracy can be degraded by the unsteady agitation coming from the LES region. It may in the present method be worth while to use an accurate, advanced RANS model. The EARSM model is used in the steady RANS solver. The new method is called NZ S-DES . It is found to substantially improve the predicting capability of the standard DES. A great advantage of the new model is that it is insensitive to the location of the RANS-LES interface.  相似文献   

15.
The large eddy simulation(LES) approach implemented in the KIVA-3V code and based on one-equation sub-grid turbulent kinetic energy model are employed for numerical computation of diesel sprays in a constant volume vessel and in a Caterpillar 3400 series diesel engine.Computational results are compared with those obtained by an RANS(RNG k-ε) model as well as with experimental data.The sensitivity of the LES results to mesh resolution is also discussed.The results show that LES generally provides flow and spray characteristics in better agreement with experimental data than RANS;and that small-scale random vortical structures of the in-cylinder turbulent spray field can be captured by LES.Furthermore,the penetrations of fuel droplets and vapors calculated by LES are larger than the RANS result,and the sub-grid turbulent kinetic energy and sub-grid turbulent viscosity provided by the LES model are evidently less than those calculated by the RANS model.Finally,it is found that the initial swirl significantly affects the spray penetration and the distribution of fuel vapor within the combustion chamber.  相似文献   

16.
This review presents the state of the art of hybrid RANS/LES modeling for the simulation of turbulent flows. After recalling the modeling used in RANS and LES methodologies, we propose in a first step a theoretical formalism developed in the spectral space that allows to unify the RANS and LES methods from a physical standpoint. In a second step, we discuss the principle of the hybrid RANS/LES methods capable of representing a RANS-type behavior in the vicinity of a solid boundary and an LES-type behavior far away from the wall boundary. Then, we analyze the principal hybrid RANS/LES methods usually used to perform numerical simulation of turbulent flows encountered in engineering applications. In particular, we investigate the very large eddy simulation (VLES), the detached eddy simulation (DES), the partially integrated transport modeling (PITM) method, the partially averaged Navier-Stokes (PANS) method, and the scale adaptive simulation (SAS) from a physical point of view. Finally, we establish the connection between these methods and more precisely, the link between PITM and PANS as well as DES and PITM showing that these methods that have been built by different ways, practical or theoretical manners have common points of comparison. It is the opinion of the author to consider that the most appropriate method for a particular application will depend on the expectations of the engineer and the computational resources the user is prepared to expend on the problem.  相似文献   

17.
The paper presents adaptive mesh moving methods for large eddy simulation (LES) of turbulent flows. With this approach, a given number of grid points is redistributed with respect to an appropriately selected criterion. The Arbitrary Lagrangian–Eulerian formulation is applied to solve the governing equation on moving grids employing a collocated finite volume formulation. A dynamic moving mesh partial differential equation based on a variational principle is solved for the corner points of the grid by means of a dedicated solver. Adaptation is performed in a statistical sense so that statistical quantities of interest are employed. Various LES-specific design criteria and combination of them are proposed, such as the time-averaged gradient of streamwise velocity, turbulent kinetic energy and production rate. These are investigated in the framework of elementary and balanced monitor functions. These are tested for the three-dimensional flow in a channel with periodic constrictions. The numerical results are compared to a highly resolved LES reference solution. The independence of the moving mesh method from the initial LES is shown, and its potential to improve the efficient resolution of turbulent flow features is demonstrated.  相似文献   

18.
Kozo Fujii 《Shock Waves》2008,18(2):145-154
Computational Fluid Dynamics (CFD) has contributed extensively to high speed shock-wave research. With study examples by the author’s group in the past, effectiveness of CFD both for design of transportation vehicles and for understanding of fluid physics is discussed. Trends of CFD for further use are then discussed based on recent applications and three key features: computer progress, spectral-like high-resolution schemes and LES and LES/RANS hybrid methods are focused. Recent CFD research reveals that high-speed flows, even the ones considered to be steady state have inherently unsteady nature that requires LES-like computations for successful simulations. Such simulations require remarkably higher grid resolution, but emerging numerical techniques having spectral-like high resolution would help reducing the number of grid points required for such simulations and make them feasible. The paper is summarized by addressing issues of future CFD.  相似文献   

19.
A Hybrid RANS/LES Simulation of Turbulent Channel Flow   总被引:1,自引:0,他引:1  
Hybrid models combining large eddy simulation (LES) with Reynolds-averaged Navier–Stokes (RANS) simulation are expected to be useful for wall modeling in the LES of high Reynolds number flows. Some hybrid simulations of turbulent channel flow have a common defect; the mean velocity profile has a mismatch between the RANS and LES regions due to a steep velocity gradient at the interface. This mismatch is reproduced and examined using a simple hybrid model; the Smagorinsky model is switched to a RANS model increasing the filter width. It is suggested that a rapid spatial variation in the eddy viscosity is responsible for an underestimate of the grid-scale shear stress and for the steep velocity gradient. To reduce the mean velocity mismatch a new scheme is proposed; additional filtering is introduced to define two kinds of velocity components at the interface between the two regions. The two components are used to remove inconsistency in the velocity equations due to a rapid variation in the filter width. Using the new scheme, simulations of channel flow are carried out with the simple hybrid model. It is shown that the grid-scale shear stress becomes large enough and most of the mean velocity mismatch is removed. Simulations for higher Reynolds numbers are carried out with the k–ε model and the one-equation subgrid-scale model. Although it is necessary to improve the turbulence models and the treatment of the buffer region, the new scheme is shown to be effective for reducing the mismatch and to be useful for developing better hybrid simulations. Received 5 April 2002 and accepted 8 January 2003 Published online 25 March 2003 Communicated by M.Y. Hussaini  相似文献   

20.
将两方程k-ω SST湍流模型和Sagaut的混合尺度亚格子模型通过一个混合函数相结合, 构造出一种混合大涡/雷诺平均N-S方程模拟方法(hybird large eddy simulation/reynolds-averaged navier-stokes, Hybrid LES/RANS), 采用这种混合模拟方法结合5阶WENO格式对Ma=2.8平板湍流边界层进行了数值模拟, 并在计算区域上游入口处采用“回收/调节”方法生成湍流脉动边界条件, 通过考查RANS区域向LES区域的过渡参数及网格分辨率对这种混合模拟方法进行了评价. 计算结果表明: 该文采用的混合模拟方法可以捕捉到湍流边界层中的大尺度结构且入口边界层平均参数不会发生漂移, 混合函数应当将RANS区域和LES区域的过渡点设置在对数律层和尾迹律层的交界处, 而过渡应当迅速以获得正确的雷诺剪切应力分布, 在该文采用的模型及数值方法的条件下, 流向及展向的网格小至与Escudier混合长相当时, 能够获得可以接受的脉动速度的单点-二阶统计值.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号