首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have prepared a novel sensor for hydrogen peroxide that is based on a glassy carbon electrode modified with a film containing multi-walled carbon nanotubes wired to CuO nanoflowers. The nanoflowers were characterized by X-ray powder diffraction, and the electrode was characterized by cyclic voltammetry (CV) and scanning electron microscopy. The response of the modified electrode towards hydrogen peroxide was investigated by CV and chronoamperometry and showed it to exhibit high electrocatalytic activity, with a linear range from 0.5?μM to 82?μM and a detection limit of 0.16?μM. The sensor also displays excellent selectivity and stability.
Graphical abstract
We have prepared a novel sensor for hydrogen peroxide (H2O2) that is based on a glassy carbon electrode modified with a film containing multi-walled carbon nanotubes (MWCNTs) wired to CuO nanoflowers. The scheme shows the construction of the MWCNTs-wired CuO nanoflowers modified electrode and electrocatalytic activity towards H2O2. When H2O2 was added, the cathodic peak current of the CuO-MWCNTs/GCE remarkably increased while its anodic peak current obviously decreased. By increasing the concentration of H2O2, the cathodic peak current further increased while its anodic peak current further decreased. Indicating CuO-MWCNTs/GCE has a remarkable electrocatalytic activity for H2O2. The scheme. The construction of the MWCNTs-wired CuO nanoflowers modified electrode and electrocatalytic activity towards H2O2  相似文献   

2.
We report on a bienzyme-channeling sensor for sensing glucose without the aid of mediator. It was fabricated by cross-linking horseradish peroxidase (HRP) and glucose oxidase (GOx) on a glassy carbon electrode modified with multiwalled carbon nanotubes (MWNTs). The bienzyme was cross-linked with the MWNTs by glutaraldehyde and bovine serum albumin. The MWNTs were employed to accelerate the electron transfer between immobilized HRP and electrode. Glucose was sensed by amperometric reduction of enzymatically generated H2O2 at an applied voltage of ?50 mV (vs. Ag/AgCl). Factors influencing the preparation and performance of the bienzyme electrode were investigated in detail. The biosensor exhibited a fast and linear response to glucose in the concentration range from 0.4 to 15 mM, with a detection limit of 0.4 mM. The sensor exhibited good selectivity and durability, with a long-term relative standard deviation of <5 %. Analysis of glucose-spiked human serum samples yielded recoveries between 96 and 101 %.
Figure
A novel bienzyme-channeling sensor for glucose sensing has been constructed without the aid of mediator. This biosensor was fabricated by cross-linking horseradish peroxidase (HRP) and glucose oxidase (GOD) onto glass carbon electrode (GCE) modified with multiwall carbon nanotubes (MWNTs) which accelerated the electron transfer between the HRP and electrode.  相似文献   

3.
Yang  Yang  Fu  Renzhong  Yuan  Jianjun  Wu  Shiyuan  Zhang  Jialiang  Wang  Haiying 《Mikrochimica acta》2015,182(13):2241-2249

We are presenting a sensor for hydrogen peroxide (H2O2) that is based on the use of a heterostructure composed of Pt nanoparticles (NPs) and carbon nanofibers (CNFs). High-density Pt NPs were homogeneously loaded onto a three-dimensional nanostructured CNF matrix and then deposited in a glassy carbon electrode (GCE). The resulting sensor synergizes the advantages of the conducting CNFs and the nanoparticle catalyst. The porous structure of the CNFs also favor the high-density immobilization of the NPs and the diffusion of water-soluble molecules, and thus assists the rapid catalytic oxidation of H2O2. If operated at a working voltage of −0.2 V (vs. Ag/AgCl), the modified GCE exhibits a linear response to H2O2 in the 5 μM to 15 mM concentration range (total analytical range: 5 μM to 100 mM), with a detection limit of 1.7 μM (at a signal-to-noise ratio of 3). The modified GCE is not interfered by species such as uric acid and glucose. Its good stability, high selectivity and good reproducibility make this electrode a valuable tool for inexpensive amperometric sensing of H2O2.

The Pt NPs/CNF heterostructure-based H2O2 sensor synergizes the advantages of both the conducting carbon nanofibers and the nanoparticle catalyst. The 3D structure of the nanofibers favor high density immobilization of the nanoparticles and penetration by water-soluble molecules, which assists the catalyic oxidation of H2O2. The sensor shows outstanding performance in terms of detection range, detection limit, response time, stability and selectivity.

  相似文献   

4.
The authors describe a composite material prepared from carbon nanohorns and poly(2-aminopyridine) that was obtained by electrochemical polymerization of 2-aminopyridine on carbon nanohorns. The material was used to modify a glassy carbon electrode (GCE) to obtain a sensor for non-enzymatic determination of hydrogen peroxide. The modified GCE was characterized by cyclic voltammetry, electrochemical impedance spectroscopy and chronoamperometry. The modified electrode is shown to display excellent electrical conductivity and catalytic activity towards hydrogen peroxide, mainly due to the large specific surface area of carbon nanohorns, the good electron charge transfer properties resulting from the use of poly(2-aminopyridine), and their synergistic effect. The response of the modified GCE (best operated at a working potential of ?0.45 V vs. SCE) to H2O2 is linear in the 0.05 to 8 mM concentration range. The limits of detection (LOD) and quantitation (LOQ) are 3.6 μM and 12.4 μM, respectively. The electrode is selective, stable and reproducible, this making it a promising tool for non-enzymatic determination of hydrogen peroxide.
Graphical abstract A glassy carbon electrode was modified with carbon nanohorns and poly(2-aminopyridine) to obtain a sensor for H2O2
  相似文献   

5.
A sensor based on silver nanoparticles (NPs)/multiwalled carbon nanotube (CNT)-modified glassy carbon electrode (GCE) was prepared and employed for accurate and rapid determination of hydrogen peroxide (H2O2). In summary, by using a mechanochemical method, multiwalled CNTs dispersed in ethanol and used for modification of GCE. After that, by using a double-pulse technique, silver NPs are electrodeposited on surface of multiwalled CNTs/ GCE. Parameters that are affected by electrocatalytic reduction of H2O2 on the modified electrode, such as multiwalled CNT concentration and double-pulse parameters, were optimized using Minitab software. The optimal modified electrode was characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and cyclic voltammetry. The proposed H2O2 sensor exhibited excellent characteristics for the sensing of H2O2, such as wide linear range from 0.1 to 10 mM, a low detection limit of 2 μM, high repeatability, and no interference by a number of substances.  相似文献   

6.
《Analytical letters》2012,45(8):1556-1568
Abstract

A reagentless H2O2 sensor based on the direct electron transfer of myoglobin (Mb) doped in multiwalled carbon nanotubes enhanced grafted collagen matrix is proposed. The formal potential of the immobilized Mb was ?0.358 V with a surface coverage of 4.0×10?10 mol cm?2. The electrode process was surface‐controlled with an electron transfer rate constant of 9.7 s?1. The proposed biosensor displayed an excellent electrocatalytic response to the reduction of H2O2 with a linear range from 0.6 to 39.0 µM. Owing to the good biocompatibility and high enzyme loading of the matrix the biosensor exhibited acceptable stability and reproducibility.  相似文献   

7.
We have prepared a graphene-based hybrid nanomaterial by electrochemical deposition of cobalt oxide nanoparticles (CoOxNPs) on the surface of electrochemically reduced graphene oxide deposited on a glassy carbon electrode (GCE). Scanning electron microscopy and cyclic voltammetry were used to characterize the immobilized nanoparticles. Electrochemical determination of H2O2 is demonstrated with the modified GCE at pH 7. Compared to GCEs modified with CoOxNPs or graphene sheets only, the new electrode displays larger oxidative current response to H2O2, probably due to the synergistic effects between the graphene sheets and the CoOxNPs. The sensor responds to H2O2 with a sensitivity of 148.6 μA mM?1 cm?2 and a linear response range from 5 μM to 1 mM. The detection limit is 0.2 μM at a signal to noise ratio (SNR) of three. The method was successfully applied to the determination of H2O2 in hydrogen peroxide samples.
Figure
A highly sensitive H2O2 sensor using a glassy carbon electrode modified with cobalt oxide nanoparticles/electrochemical reduced graphene oxide (CoOxNPs/ERGO) hybrids is presented.  相似文献   

8.
Qian L  Yang X 《Talanta》2006,68(3):721-727
A new amperometric biosensor for hydrogen peroxide was developed based on cross-linking horseradish peroxidase (HRP) by glutaraldehyde with multiwall carbon nanotubes/chitosan (MWNTs/chitosan) composite film coated on a glassy carbon electrode. MWNTs were firstly dissolved in a chitosan solution. Then the morphology of MWNTs/chitosan composite film was characterized by field-emission scanning electron microscopy. The results showed that MWNTs were well soluble in chitosan and robust films could be formed on the surface. HRP was cross-linked by glutaraldehyde with MWNTs/chitosan film to prepare a hydrogen peroxide biosensor. The enzyme electrode exhibited excellent electrocatalytic activity and rapid response for H2O2 in the absence of a mediator. The linear range of detection towards H2O2 (applied potential: −0.2 V) was from 1.67 × 10−5 to 7.40 × 10−4 M with correction coefficient of 0.998. The biosensor had good repeatability and stability for the determination of H2O2. There were no interferences from ascorbic acid, glucose, citrate acid and lactic acid.  相似文献   

9.
We have constructed a novel electrochemiluminescence (ECL) platform by functionalizing a poly(amidoamine) dendrimer (PAAD) with titanate nanotubes (TiNTs). The PAAD has an open spherical structure that possesses a high density of active groups and thus favors mass transport, while the TiNTs possess excellent electronic conductivity and thus can promote electron transfer on the surface of a glassy carbon electrode (GCE). A study on the intensity and stability of the ECL of luminol on the modified GCE revealed a substantial improvement compared to that of a bare GCE. The effects of the concentration of TiNTs, the pH value of the solution, and of electrochemical parameters on the intensity of the ECL of luminol were studied and resulted in a sensitive ECL sensor for hydrogen peroxide (H2O2) that works in the concentration range of 1 nM to 0.9 μM. The scavenging effect of superoxide dismutase (SOD) on the H2O2 electrode ECL was then exploited to design a biosensor for the determination of SOD in concentrations between 50 and 500 nM.
Figure
The reaction mechanism schematic diagram of luminol ECL on the PAAD/TiNTs modified eledtrode.  相似文献   

10.
We studied a rapid, sensitive and selective amperometric sensor for determination of hydrogen peroxide by electrodeposited Ag NPs on a modified glassy carbon electrode (GCE). The modified GCE was constructed through a step by step modification of magnetic chitosan functional composite (Fe3O4–CH) and high-dispersed silver nanoparticles on the surface. The resulted Ag@Fe3O4–CH was characterized by various analytical methods including Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy, scanning electron microscopy and cyclic voltammetry. The proposed sensor employed Ag@Fe3O4–CH/GCE as the working electrode with a linear current response to the hydrogen peroxide concentration in a wide range from 0.01 to 400 µM with a low limit of detection (LOD = 0.0038 µM, S/N = 3). The proposed sensor showed superior reproductivity, sensitivity and selectivity for the detection of hydrogen peroxide in environmental and clinical samples.  相似文献   

11.
In this work, a novel hydrogen peroxide biosensor derived from maize tassel (MT) and multiwalled carbon nanotube (MWCNT) composite was used to adsorb horseradish peroxidase (HRP) onto the surface of a glassy carbon electrode through electrostatic interactions. The morphology and structure of the products were characterized by SEM, FTIR and UV‐visible spectroscopy. The electrochemical and electrocatalytic performance of the HRP/MT‐MWCNT/GCE was studied using voltammetric and amperometric methods. The amperometric response of the biosensor varied linearly with concentration of H2O2 from 9 µM to 1 mM with detection limit of 4.0 µM (S/N=3). Furthermore, the biosensor exhibited good reproducibility and stability.  相似文献   

12.
A novel approach to construct a amperometric biosensor for determination of H2O2 is described. Horseradish peroxidase (HRP) as a base enzyme was immobilized into the mixture of multiwalled carbon nanotubes (MWNTs) and polyvinyl butyral (PVB). Taking the classical hydroquinone as mediator, cyclic voltammetry and amperometric measurements were used to study and optimize the performance of the resulting H2O2 biosensor. The effect of the concentration of MWNTs, HRP, hydroquinone, solution pH, and the working potential of amperometry on the electrochemical biosensor was systematically studied. The results showed that the fabricated biosensor demonstrated significant electrocatalytic activity for the reduction of hydrogen peroxide with wide linear range from 0.000832 to 0.6 mM, and low detection limit 0.000167 mM (S/N = 3) with fast response time less than 8 s. The apparent Michaelis–Menten constant was determined to be 0.049 mM. Additionally, the biosensor exhibited high sensitivity, rapid response and good long-term stability.  相似文献   

13.
A glassy carbon electrode was modified with PdO-NiO composite nanofibers (PdO-NiO-NFs) and applied to the electrocatalytic reduction of hydrogen peroxide (H2O2). The PdO-NiO-NFs were synthesized by electrospinning and subsequent thermal treatment, and then characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. Factors such as the composition and fraction of nanofibers, and of the applied potential were also studied. The sensor exhibits high sensitivity for H2O2 (583.43 μA?·?mM?1?·?cm?2), a wide linear range (from 5.0 μM to 19 mM), a low detection limit (2.94 μM at an SNR of 3), good long term stability, and is resistant to fouling.
Figure
A glassy carbon electrode was modified with PdO-NiO composite nanofibers which were synthesized by electrospinning and subsequent thermal treatment. The sensor exhibited a wide linear range, high sensitivity, good stability and selectivity for the detection of hydrogen peroxide  相似文献   

14.
We report on a modified glassy carbon electrode (GCE) for sensing hydrogen peroxide (H2O2). It was constructed by consecutive electrochemical deposition of poly(anthranilic acid) and poly(diphenylamine sulfonate) on the GCE, followed by the deposition of copper oxide (CuO). The morphology and electrochemistry of the modified electrode was characterized by atomic force microscopy, X-ray diffraction, cyclic voltammetry, and electrochemical impedance spectroscopy. The catalytic performance of the sensor was studied with the use of differential pulse voltammetry under optimized conditions. This sensor displayed significantly better electrocatalytic activity for the reduction of H2O2 in comparison to a GCE without or with modification with CuO or polymer films alone. The response to H2O2 is linear in the range between 0.005 to ~11 mM, and the detection limit is 0.18 μM (at an S/N of 3).
A new bio-mimetic sensor, CuO/PANA@PSDS/GCE, was prepared, it exhibited a better electrocatalytic activity toward the reduction of the H2O2 compared with that of the CuO/GCE, PANA@PSDS/GCE, and GCE. Its increased catalytic response was due to the polyaniline doped (PANA@PSDS) film, which enlarges the specific surface area of the electrode, and increases the loading of the CuO nano-particles.  相似文献   

15.
A novel Prussian blue/copper‐gold bimetallic nanoparticles hybrid film modified electrode was prepared by electrochemical deposition on a glassy carbon electrode (PB/Cu‐AuNPs/GCE). Morphology and electrochemistry of this electrode were studied by UV‐vis spectroscopy, scanning electron microscopy, X‐ray diffraction, cyclic voltammetry and electrochemical impedance spectroscopy. The sensor showed significantly better electrocatalytic activity for the reduction of hydrogen peroxide in comparison with the single PB/GCE and PB/AuNPs/GCE. This was attributed to the synergistic effect of PB and Cu‐Au bimetallic nanoparticles. Also, the sensor demonstrated an overall high level of performance for the analysis of H2O2 in the concentration range from 0.002 to 0.84 mM.  相似文献   

16.
We report on an amperometric biosensor for hydrogen peroxide. It is obtained via layer-by-layer assembly of ordered mesoporous carbon nanospheres and poly(diallyldimethylammonium) on the surface of an indium tin oxide (ITO) glass electrode and subsequent adsorption of cytochrome c. UV–vis absorption spectroscopy was applied to characterize the process of forming the assembled layers. Cyclic voltammetry revealed a direct and quasi-reversible electron transfer between cytochrome c and the surface of the modified ITO electrode. The surface-controlled electron transfer has an apparent heterogeneous electron-transfer rate constant (k s ) of 5.9?±?0.2?s?1 in case of the 5-layer electrode. The biosensor displays good electrocatalytic response to the reduction of H2O2, and the amperometric signal increase steadily with the concentration of H2O2 in the range from 5?μM to 1.5?mM. The detection limit is 1?μM at pH 7.4. The apparent Michaelis-Menten constant (K m ) of the sensor is 0.53?mM. We assume that the observation of a direct electron transfer of cytochrome c on mesoporous carbon nanospheres may form the basis for a feasible approach for durable and reliable detection of H2O2.
Figure
An amperometric biosensor for hydrogen peroxide has been fabricated via layer-by-layer assembly of mesoporous carbon nanospheres and polyelectrolyte on ITO electrode surface for the adsorption of cytochrome c. The direct electrochemistry and electrocatalytic activity of cytochrome c was achieved on the multilayer-assembled electrode, indicating a good affinity and biocompatibility of mesoporous carbon nanospheres for cytochrome c.  相似文献   

17.
A simple and practical sensor of hydrogen peroxide (H2O2) was designed successfully. The mixture of horseradish peroxidase (HRP) and chitosan (Chit) are effectively immobilized on the surface of poly-L-leucine/polydopamine modified glassy carbon electrode (PL-LEU/PDA/GCE). Under the optimum conditions, the biosensor based on HRP exhibits a fast amperometric response (within 3 s) to H2O2. The linear response range of the sensor is 0.5–952.0 μmol L–1, with the detection limit of 0.1 μmol L–1 (S/N = 3) and the sensitivity of 0.23 A L moL–1 cm–2. The apparent Michaelis–Menten constant (k M app) of the biosensor is evaluated to be 0.12 mmol L–1, which suggests that the HRP-Chit/PL-LEU/PDA/GCE shows a higher affinity for H2O2. The sensor exhibits good sensitivity, selectivity, stability and reproducibility. The proposed method has been successfully applied to the determination of H2O2 in practical samples.  相似文献   

18.
《Electroanalysis》2003,15(3):219-224
A novel hydrogen peroxide biosensor has been constructed based on the characteristics of the carbon nanotube. The multiwall carbon nanotube (MWNT) was used as a coimmobilization matrix to incorporate horseradish peroxidase (HRP) and electron transfer mediator methylene blue (MB) onto a glassy carbon electrode surface. Cyclic voltammetry and amperometric measurements were employed to demonstrate the feasibility of methylene blue as an electron carrier between the immobilized peroxidase and the surface of glassy carbon electrode. The amperometric response of this resulting biosensor to H2O2 shows a linear relation in the range from 4 μM to 2 mM. The detection limit was 1 μM when the signal to noise ratio is 3. The presence of dopamine and ascorbic acid hardly affects the sensitive determination of H2O2. This biosensor also possesses very good stability and reproducibility.  相似文献   

19.
We report on a novel matrix of solgel organic–inorganic nanocomposite that was fabricated from silica sol gel and dextran. It was used for the immobilization of horseradish peroxidase (HRP) to give a biosensor for hydrogen peroxide (H2O2). The sensor film was characterized by Fourier transform infrared and UV–vis spectroscopy with respect to structural features and the conformation of the enzyme. The topographies of the surface of the electrode were investigated by field emission scanning electron microscopy. The biosensor was used to determine H2O2 quantitatively in the presence of Methylene blue as a mediator with high electron transfer efficiency. A pair of stable and well defined quasi-reversible redox peaks of the HRP [Fe (III)]/HRP [Fe (II)] redox couple was observed at pH 7.0. The biosensor responds to H2O2 in the 0.5 mM to 16.5 mM concentration range, and the limit of detection is 0.5 mM.
Figure
A synthesized novel silica-dextran nanocomposite provides three dimensional interfaces for immobilization of HRP which maintains the characteristic structure and enhances the catalytic activity.  相似文献   

20.
We report on a novel hydrogen peroxide biosensor that was fabricated by the layer-by-layer deposition method. Thionine was first deposited on a glassy carbon electrode by two-step electropolymerization to form a positively charged surface. The negatively charged gold nanoparticles and positively charged horseradish peroxidase were then immobilized onto the electrode via electrostatic adsorption. The sequential deposition process was characterized using electrochemical impedance spectroscopy by monitoring the impedance change of the electrode surface during the construction process. The electrochemical behaviour of the modified electrode and its response to hydrogen peroxide were studied by cyclic voltammetry. The effects of the experimental variables on the amperometric determination of H2O2 such as solution pH and applied potential were investigated for optimum analytical performance. Under the optimized conditions, the biosensor exhibited linear response to H2O2 in the concentration ranges from 0.20 to 1.6?mM and 1.6 to 4.0?mM, with a detection limit of 0.067?mM (at an S/N of 3). In addition, the stability and reproducibility of this biosensor was also evaluated and gave satisfactory results.
Figure
A novel hydrogen peroxide biosensor was fabricated via layer-by-layer depositing approach. Thionine was first deposited on a glassy carbon electrode by electropolymerization to form a positively charged surface (PTH). Negatively charged gold nanoparticles (NPs) and positively charged horseradish peroxidase (HRP) were then immobilized onto the electrode via electrostatic adsorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号