首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The membranes for gel polymer electrolyte (GPE) for lithium-ion batteries were prepared by electrospinning a blend of poly(vinylidene fluoride) (PVdF) with cellulose acetate (CA). The performances of the prepared membranes and the resulted GPEs were investigated, including scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), X-ray diffraction (XRD), porosity, hydrophilicity, electrolyte uptake, mechanical property, thermal stability, AC impedance measurements, linear sweep voltammetry, and charge–discharge cycle tests. The effect of the ratio of CA to PVdF on the performance of the prepared membranes was considered. It is found that the GPE based on the blended polymer with CA:PVdF =2:8 (in weight) has an outstanding combination property-strength (11.1 MPa), electrolyte uptake (768.2 %), thermal stability (no shrinkage under 80 °C without tension), and ionic conductivity (2.61 × 10?3 S cm?1). The Li/GPE/LiCoO2 battery using this GPE exhibits superior cyclic stability and storage performance at room temperature. Its specific capacity reaches up to 204.15 mAh g?1, with embedded lithium capacity utilization rate of 74.94 %, which is higher than the other lithium-ion batteries with the same cathode material LiCoO2 (about 50 %).  相似文献   

2.

In this study, spinel LiNi0.5Mn1.5O4 (LNMO) was successfully decorated with Al2O3 thin film by using atomic layer deposition (ALD) approach and evaluated as a cathode material for high-temperature applications in lithium ion batteries (LIBs). To optimize the LNMO-Al2O3 electrodes operated at elevated temperature (55 °C), the effects of Al2O3 thicknesses adjusted by controlling the ALD deposition cycle were systemically investigated. According to the series of electrochemical results, the LNMO coated with the Al2O3 thin layer in the thickness of ca. 2 nm was achieved by using one-cycle ALD and the LNMO-Al2O3 electrode exhibited superior electrochemical stability (capacity retention up to 93.7% after consecutive 150 charge/discharge cycles at 0.5 C to the pristine LNMO electrode at elevated temperature. This can be attributed to two factors: (i) the decoration of Al2O3 thin layer could not contribute remarkably to extra resistance for charge transfer; (ii) Al2O3 thin film deposition could efficiently stabilize the growth of cathode electrolyte interface (CEI) and suppress the dissolution of transition metals. Therefore, these results verify that the LNMO-Al2O3 electrode could be regarded as a promising cathode material for high-voltage LIBs, especially at elevated temperature operation.

  相似文献   

3.
Ultrathin surface coatings (< 5 nm) on electrodes have been developed to mitigate the capacity decay induced by manganese (Mn) dissolution, a limiting factor for Mn-based oxide electrode materials in lithium ion batteries. We demonstrated that the capacity decay was attributed to the Mn deposited on the graphite electrode accelerating the electrolyte decomposition. While the Al2O3 coating on the positive electrode suppressed the Mn dissolution, we found that the Al2O3 coating on the negative electrode was counter-intuitively more beneficial and efficient in preventing the Mn deposition and achieving excellent capacity retention in lithium ion batteries.  相似文献   

4.
In this work, a polymer/ceramic phase-separation porous membrane is first prepared from polyvinyl alcohol–polyacrylonitrile water emulsion mixed with fumed nano-SiO2 particles by the phase inversion method. This porous membrane is then wetted by a non-aqueous Li–salt liquid electrolyte to form the polymer/colloid dual-phase electrolyte membrane. Compared to the liquid electrolyte in conventional polyolefin separator, the obtained electrolyte membrane has superior properties in high ionic conductivity (1.9 mS?cm?1 at 30 °C), high Li+ transference number (0.41), high electrochemical stability (extended up to 5.0 V versus Li+/Li on stainless steel electrode), and good interfacial stability with lithium metal. The test cell of Li/LiCoO2 with the electrolyte membrane as separator also shows high-rate capability and excellent cycle performance. The polymer/colloid dual-phase electrolyte membrane shows promise for application in rechargeable lithium batteries.  相似文献   

5.
Polymer electrolytes that have been developed for battery applications fall into two general classes, neat or “pure” polymer and plasticized or gel in which the polymer is combined with a conducting organic electrolyte. The polyethylene oxide (PEO) and its modifications are typical of the “pure” polymer electrolytes. They have poor conductivity at room temperatures, but at elevated temperatures, their conductivity is of the order of 10−3 to 10−4 S/cm. The PEO electrolytes have found application in the high temperature (>60°C) lithium metal anode battery systems. The high temperature necessary for good operation makes them unsuitable for use in small consumer appliances. The polymer electrolyte battery development activities have resulted in several high performance battery systems now just entering the market. Not all of the developments have resulted in commercial cell production. The commercialization activities of high performance lithium‐ion (Li‐Ion) batteries have been based on two general plastic polymer systems: poly‐vinylidene difluoride‐hexafluoropropylene copolymer (PVdF‐HFP) and polyacrylates. The polymer cells are expected to have advantages in manufacturing, flexibility, thin cell formats and lightweight packaging. Important parameters in PVdF gel electrolyte performance include the electrolyte type (combination of organic carbonates), temperature, and HFP copolymer content. Li‐Ion coin cells fabricated with a polyolefin separator with either liquid electrolyte or with the PVdF gel polymer electrolyte have equivalent performance.  相似文献   

6.
Separator is supposed to own outstanding thermal stability, superior wettability and electrolyte uptake,which is essential for developing high-rate and safe lithium metal batteries(LMBs). However, commercial polyolefin separators possess poor wettability and limited electrolyte uptake. For addressing this issue, we put forward a composite separator to implement above functions by doping layered-silicate(talcum) into polyvinylidene fluoride(PVDF). With significant improvement of electrolyte absor...  相似文献   

7.
A sponge-like poly(vinylidene fluoride)/high density polyethylene (PVDF/HDPE) separator exhibiting high ionic conductivity and transference number of Li+ ion for lithium ion battery has been prepared by non-solvent induced phase separation (NIPS) method. HDPE fillers with size smaller than 250 nm are prepared with moderated reverse phase emulsion. The ion conductivity of PVDF/HDPE separator saturated with 1.0 M LiPF6–ethylene carbonate (EC)/dimethyl carbonate (DMC)/ethyl methyl carbonate (EMC) (1:1:1, v/v/v) can be up to 2.54 mS cm?1 at 25 °C, which is higher than that of pristine PVDF separator (1.85 mS cm?1). The transference number of lithium ion with PVDF/HDPE separator is 0.495, better than that with commercial PP separator (0.33) and pristine PVDF separator (0.27). What is more, LiCoO2/Li cells assembled with PVDF/HDPE separator show good C-rate and cycling performance which indicates great potential in serving as a good candidate of polymer separator for lithium ion batteries application.  相似文献   

8.
Electrolytes with high lithium-ion conductivity, better mechanical strength and large electrochemical window are essential for the realization of high-energy density lithium batteries. Polymer electrolytes are gaining interest due to their inherent flexibility and nonflammability over conventional liquid electrolytes. In this work, lithium garnet composite polymer electrolyte membrane (GCPEM) consisting of large molecular weight (Wavg ~?5?×?106) polyethylene oxide (PEO) complexed with lithium perchlorate (LiClO4) and lithium garnet oxide Li6.28Al0.24La3Zr2O12 (Al-LLZO) is prepared by solution-casting method. Significant improvement in Li+ conductivity for Al-LLZO containing GCPEM is observed compared with the Al-LLZO free polymer membrane. Maximized room temperature (30 °C) Li+ conductivity of 4.40?×?10?4 S cm?1 and wide electrochemical window (4.5 V) is observed for PEO8/LiClO4?+?20 wt% Al-LLZO (GCPEM-20) membrane. The fabricated cell with LiCoO2 as cathode, metallic lithium as anode and GCPEM-20 as electrolyte membrane delivers an initial charge/discharge capacity of 146 mAh g?1/142 mAh g?1 at 25 °C with 0.06 C-rate.  相似文献   

9.
The Na/PVdF/S cells were composed of solid sodium, sulfur, and polyvinylidene fluoride–hexafluoropropene (PVdF) gel polymer electrolyte. The PVdF polymer electrolyte was prepared form tetraglyme plasticizer and NaCF3SO3 salt, and its electrochemical properties were studied using CV and impedance analysis. The interfacial resistance between sodium and polymer electrolyte increase with storage time, which might be associated with passivation layer. Solid-state sodium/sulfur cell using a PVdF gel polymer electrolyte has been tested. The Na/PVdF/S cell with 0.288 mA cm?2 shows a high discharge capacity of 392 mAh g?1 and 36 mAh g?1 after 20 cycles. The cycle performance of Na/GPE/S cell operating at 25 °C is worse than Na/S cell at a high temperature.  相似文献   

10.
A novel kind of sandwiched polymer membrane was prepared by coating three layers of poly(vinyl difluoride) (PVDF), poly(methyl methacrylate) (PMMA) and PVDF, separately. Its characteristics were investigated by scanning electron microscopy, FT-IR, X-ray diffraction, and differential thermal analysis. It consists of two phases. The outer PVDF layers are porous, and the inner PMMA layer is solid. Since the PMMA has a good compatibility with the carbonate-based liquid electrolyte, the membrane can easily absorb the electrolyte to form a gelled polymer electrolyte (GPE). As a result, the evaporation peak of the liquid electrolyte is increased to 160 °C. Due to very low evaporation of the liquid electrolyte, LiCoO2 shows good cycling behavior in the range of 4.4–3.0 V when this GPE is used as the separator and polymer electrolyte, and lithium as the counter and reference electrode. This unique sandwiched membrane is promising for application in scale-up lithium ion batteries with high safety and high energy density.  相似文献   

11.
Composite Li10SnP2S12 (LSPS)/polyethylene oxide (PEO) films, containing 25 to 50 % polymer, were electrophoretically deposited from acetone-based suspension and tested as possible candidates for polysulfide barriers in Li/S batteries. It was found by XRD and XPS tests that saturation of composite films by LiI salt, followed by prolonged annealing at 90 °C, diminishes the crystallinity of neat LSPS and results in the formation of a novel composite Li10+xIxSnP2S12 (LISPS)/P(EO)3/LiI solid electrolyte (x < 1). The high room-temperature ion conductivity of amorphous sulfide Li10+xIxSnP2S12 (0.1–0.3 mS cm?1) is restricted by slow ion transport via the polymer electrolyte (PE) imbedded in ceramics and grain boundaries between the PE and sulfide. Increase in polymer content and temperature improves total ion transport in the LISPS/PEO system. Conformal EPD coating of sulfur and lithium sulfide cathodes by the developed composite electrolyte increased the reversible capacity and Faradaic efficiency of the Li/S and Li/Li2S cells and enabled their operation at 60 °C.  相似文献   

12.
The microwave sintering method is used to synthesize the spinel LiMg0.05Mn1.95O4 materials, and the structures and electrochemical performances of as-prepared powders are investigated. The powders resulting from the microwave synthesis are single crystalline phases with cubic spinel structure and exhibit outstanding structural stability. The discharge capacity and cycling stability of LiMg0.05Mn1.95O4 are found to be superior with lower capacity fading over the investigated 100 cycles at elevated temperature (55 °C). The XRF and EIS measurements reveal that the doped LiMn2O4 synthesized by this simple method has lower dissolution of manganese into the electrolyte and higher electronic conductivity at high temperature for lithium ion batteries.  相似文献   

13.
Polyvinyl formal (PVFM)‐based dense polymer membranes with nano‐Al2O3 doping are prepared via phase inversion method. The membranes and also their performances as gel polymer electrolytes (GPEs) for lithium ion battery are studied by field emission scanning electron microscope, X‐ray diffraction, differential scanning calorimetry, mechanical strength test, electrolyte uptake test, electrochemical impedance spectroscopy, cyclic voltammetry, and charge–discharge test. The polymer membrane with 3 wt % nano‐Al2O3 doping shows the improved mechanical strength of 12.16 MPa and electrolyte uptake of 431.25% compared with 10.47 MPa and 310.59% of the undoped sample, respectively. The membrane absorbs and swells liquid electrolyte to form stable GPE with ionic conductivity of 4.92 × 10?4 S cm?1 at room temperature, which is higher than 1.77 × 10?4 S cm?1 of GPE from the undoped membrane. Moreover, the Al2O3‐modified membrane supporting GPE exhibits wide electrochemical stability window of 1.2–4.8 V (vs. Li/Li+) and good compatibility with LiFePO4 electrode, which implies Al2O3‐modified PVFM‐based GPE to be a promising candidate for lithium ion batteries. © 2014 Wiley Periodicals, Inc. J. Polym. Sci. Part B: Polym. Phys. 2014 , 52, 572–577  相似文献   

14.
We prepared the polyethylene oxide (PEO)-based composite membrane electrolytes which contained the specialized ionic liquids and the inorganic filler of Li7La3Zr2O12 (LLZO). Mixtures of ionic liquids and tetragonal inorganic fillers were used as additives to prepare composite electrolytes for an application of all solid-state lithium ion batteries (ASLBs). In order to improve the ionic conductivity of composite membranes, we studied the structural change and the electrochemical behaviors as a function of the amounts of solvated ionic liquids (ILs). The addition effect of solvated ILs showed the higher ionic conductivity such as 10?4 S/cm at 55 °C by reducing the crystalline character of polymer based composite, resulting in the enhanced ion conducting property. The hybrid composite membranes were successfully made in flexible form, and have an excellent thermal and electrochemical stability. Finally, the electrochemical performance of the half-cell was evaluated, and it was confirmed that the ion-conducting characteristics were influenced and controlled by the effect of ILs.  相似文献   

15.
Secondary Li?ion batteries have been paid attention to wide‐range applications of power source for the portable electronics, electric vehicle, and electric storage reservoir. Generally, lithium‐ion batteries are comprised of four components including anode, cathode, electrolyte and separator. Although separators do not take part in the electrochemical reactions in a lithium‐ion (Li?ion) battery, they conduct the critical functions of physically separating the positive and negative electrodes to prevent electrical short circuit while permitting the free flow of lithium ions through the liquid electrolyte that fill in their open porous structure. Hence, the separator is directly related to the safety and the power performance of the battery. Among a number of separators developed thus far, polyethylene (PE) and polypropylene (PP) porous membrane separators have been the most dominant ones for commercial Li?ion batteries over the decades because of their superior properties such as cost‐efficiency, good mechanical strength and pore structure, electrochemical stability, and thermal shutdown properties. However, there are main issues for vehicular storage, such as nonpolarity, low surface energy and poor thermal stability, although the polyolefin separators have proven dependable in portable applications. Hence, in this review, we decide to provide an overview of the types of polyolefin microporous separators utilized in Li?ion batteries and the methods employed to modify their surface in detail. The remarkable results demonstrate that extraordinary properties can be exhibited by mono‐ and multilayer polyolefin separators if they are modified using suitable methods and materials.  相似文献   

16.
Lithium metal is a promising anode material for next-generation high-energy-density batteries but suffers from low stripping/plating Coulombic efficiency and dendritic growth particularly at sub-zero temperatures. Herein, a poorly-flammable, locally concentrated ionic liquid electrolyte with a wide liquidus range extending well below 0 °C is proposed for low-temperature lithium metal batteries. Its all-anion Li+ solvation and phase-nano-segregation solution structure are sustained at low temperatures, which, together with a solid electrolyte interphase rich in inorganic compounds, enable dendrite-free operation of lithium metal anodes at −20 °C and 0.5 mA cm−2, with a Coulombic efficiency of 98.9 %. As a result, lithium metal batteries coupling thin lithium metal anodes (4 mAh cm−2) and high-loading LiNi0.8Co0.15Al0.05O2 cathodes (10 mg cm−2) retain 70 % of the initial capacity after 100 cycles at −20 °C. These results, as a proof of concept, demonstrate the applicability of locally concentrated ionic liquid electrolytes for low-temperature lithium metal batteries.  相似文献   

17.
For solving the safety issue of lithium ion batteries, the choice of all-solid polymer electrolyte is one of the possible solutions. However, usual polyethylene oxide including lithium supporting agent has not enough lithium ion conductivity as electrolyte for practical use. Some of our research group (M. W. and H. M.) have tried the addition of plasticizer such as borate ester or aluminate ester (Al-PEG) into monomer mixture containing lithium salt for increasing the ionic conductivity resulting in polymer electrolyte after polymerization. For such all-solid polymer electrolyte (SPE), the ionic conductivity, a value of 10−3 S/cm has been attained at 60 °C and the value will be acceptable for practical use. Since the SPE also has nonflammable property, the combination of the SPE with suitable cathode and anode may produce a new all-solid polymer battery with safety. In the present study, the SPE containing Al-PEG and dimethoxy ethylene glycol mixture as the plasticizer was newly combined with spinel Li4Ti5O12 anode and olivine LiFePO4 cathode objecting for developing stationary battery. The cell performance of the new combination will be reported at 30 °C and 50 °C.  相似文献   

18.
Of the various beyond‐lithium‐ion battery technologies, lithium–sulfur (Li–S) batteries have an appealing theoretical energy density and are being intensely investigated as next‐generation rechargeable lithium‐metal batteries. However, the stability of the lithium‐metal (Li°) anode is among the most urgent challenges that need to be addressed to ensure the long‐term stability of Li–S batteries. Herein, we report lithium azide (LiN3) as a novel electrolyte additive for all‐solid‐state Li–S batteries (ASSLSBs). It results in the formation of a thin, compact and highly conductive passivation layer on the Li° anode, thereby avoiding dendrite formation, and polysulfide shuttling. It greatly enhances the cycling performance, Coulombic and energy efficiencies of ASSLSBs, outperforming the state‐of‐the‐art additive lithium nitrate (LiNO3).  相似文献   

19.
Zn-doped LiNi0.8Co0.2O2 exhibits impressive electrochemical performance but suffers limited cycling stability due to the relative large size of irregular and bare particle which is prepared by conventional solid-state method usually requiring high calcination temperature and prolonged calcination time. Here, submicron LiNi0.8Co0.15Zn0.05O2 as cathode material for lithium-ion batteries is synthesized by a facile sol-gel method, which followed by coating Al2O3 layer of about 15 nm to enhance its electrochemistry performance. The as-prepared Al2O3-coated LiNi0.8Co0.15Zn0.05O2 cathode delivers a highly reversible capacity of 182 mA h g?1 and 94% capacity retention after 100 cycles at a current rate of 0.5 C, which is much superior to that of bare LiNi0.8Co0.15Zn0.05O2 cathode. The enhanced electrochemistry performance can be attributed to the Al2O3-coated protective layer, which prevents the direct contact between the LiNi0.8Co0.15Zn0.05O2 and electrolyte. The escalating trend of Li-ion diffusion coefficient estimated form electrochemical impedance spectroscopic (EIS) also indicate the enhanced structural stability of Al2O3-coated LiNi0.8Co0.15Zn0.05O2, which rationally illuminates the protection mechanism of the Al2O3-coated layer.  相似文献   

20.
In this study, a novel ion conductive polyimide (PI) nanofiber reinforced photocured hybrid electrolyte has been fabricated. Polyimide fibers were fabricated with the reaction between 4,4′‐oxydianiline (ODA) and 3,3′,4,4′‐benzophenonetetracarboxylic dianhydride (BTDA) followed by electrospinning and thermal imidization methods. Then, PI electrospun fibers were dipped into hybrid resin formulation containing bisphenol A ethoxylate dimethacrylate (BEMA), poly (ethylene glycol) methyl ether methacrylate (PEGMA) and 3‐(methacryloyloxy) propyltrimethoxysilane (MEMO) and then photocured to prepare PI nanofiber reinforced electrolyte membrane. Photocured membranes were soaked into lithium hexafluorophosphate (LiPF6) before measuring electrochemical stability and ionic conductivity of hybrid polyelectrolyte. The chemical structure and electrochemical performance of the electrolytes were examined by Fourier transform infrared (FTIR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), electrochemical impedance spectroscopy (EIS), linear sweep voltammetry (LSV) and scanning electron microscopy (SEM) analysis. The incorporation of MEMO into organic matrix effectively increased the modulus from 2.83 to 5.91 MPa. The obtained results showed that a suitable electrolyte for Li‐ion batteries with high lithium uptake ratio, high conductivity (7.2 × 10?3 S cm?1) at ambient temperature and wide stability window above 5.5 V had been prepared. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号