首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
For the purpose of lowering the cost of metal hydride electrode, the La of LaY2Ni9 electrode was replaced by Ce. The electrochemical performances of the CeY2Ni9 negative electrode, at a room and different temperatures, were compared with the parent alloy LaY2Ni9. At room temperature during a long cycling, the evolution of the electrochemical capacity—the diffusivity indicator (\( \frac{D_{\mathrm{H}}}{a^2} \))—the exchange current density, and the equilibrium potential were determined. At different temperatures, the electrochemical characterization of this alloy allowed the estimation of the enthalpy, the entropy, and the activation energy of the hydride formation. The evolution of the high-rate dischargeability was also evaluated at different temperatures. Compared with the parent LaY2Ni9 alloy, CeY2Ni9 exhibits an easy activation and good reaction reversibility. This alloy also conserves a good lifetime during a long-term cycling. A lower activation energy determined for this alloy corresponds to an easy absorption of hydrogen into this new alloy.  相似文献   

2.
Li- and Mn-rich layered Li1.2Ni0.13Co0.13Mn0.54O2 cathode material was synthesized using sonochemical method followed by annealing at 700, 800, and 900 °C for 10 h. The material was characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), Raman spectroscopy, and electrochemical techniques. Its performance as a cathode material for Li-ion batteries was examined. With the sample annealed at 900 °C, an initial specific capacity of 240 mAh g?1 was obtained, which decreased to 215 mAh g?1 after 80 cycles, thus retaining about 90 % of its initial capacity. In contrast, samples annealed at lower temperatures exhibited lower capacity retention upon cycling. Thus, the final annealing temperature was found to have a significant effect on the electrochemical stability of this material in terms of capacity, average voltage, and rate capability. The advantage of this synthesis, which includes a sonochemical stage, compared with a conventional co-precipitation synthesis, was also confirmed.  相似文献   

3.
Sn-doped Li-rich layered oxides of Li1.2Mn0.54-x Ni0.13Co0.13Sn x O2 have been synthesized via a sol-gel method, and their microstructure and electrochemical performance have been studied. The addition of Sn4+ ions has no distinct influence on the crystal structure of the materials. After doped with an appropriate amount of Sn4+, the electrochemical performance of Li1.2Mn0.54-x Ni0.13Co0.13Sn x O2 cathode materials is significantly enhanced. The optimal electrochemical performance is obtained at x = 0.01. The Li1.2Mn0.53Ni0.13Co0.13Sn0.01O2 electrode delivers a high initial discharge capacity of 268.9 mAh g?1 with an initial coulombic efficiency of 76.5% and a reversible capacity of 199.8 mAh g?1 at 0.1 C with capacity retention of 75.2% after 100 cycles. In addition, the Li1.2Mn0.53Ni0.13Co0.13Sn0.01O2 electrode exhibits the superior rate capability with discharge capacities of 239.8, 198.6, 164.4, 133.4, and 88.8 mAh g?1 at 0.2, 0.5, 1, 2, and 5 C, respectively, which are much higher than those of Li1.2Mn0.54Ni0.13Co0.13O2 (196.2, 153.5, 117.5, 92.7, and 43.8 mAh g?1 at 0.2, 0.5, 1, 2, and 5 C, respectively). The substitution of Sn4+ for Mn4+ enlarges the Li+ diffusion channels due to its larger ionic radius compared to Mn4+ and enhances the structural stability of Li-rich oxides, leading to the improved electrochemical performance in the Sn-doped Li1.2Mn0.54Ni0.13Co0.13O2 cathode materials.  相似文献   

4.
Spherical Li[Ni0.5Mn0.3Co0.2]O2 was prepared by both the continuous hydroxide co-precipitation method and continuous carbonate co-precipitation method under different calcined temperatures. The physical properties and electrochemical behaviors of Li[Ni0.5Mn0.3Co0.2]O2 prepared by two methods were characterized by X-ray diffraction, scanning electron microscope, and electrochemical measurements. It has been found that different preparation methods will result in the differences in the morphology (shape, particle size, and tap density), structure stability, and the electrochemical characteristics (shape of initial charge/discharge curve, cycle stability, and rate capability) of the final product Li[Ni0.5Mn0.3Co0.2]O2. The physical and electrochemical properties of the spherical Li[Ni0.5Mn0.3Co0.2]O2 prepared by continuous hydroxide co-precipitation is apparently superior to the one prepared by continuous carbonate co-precipitation method. The optimal sample prepared by continuous hydroxide co-precipitation at 820 °C exhibits a hexagonally ordered layer structure, high special discharge capacity, good capacity retention, and excellent rate capability. It delivers high initial discharge capacity of 175.2 mAh g?1 at 0.2 C rate between 3.0 and 4.3 V, and the capacity retention of 98.8 % can be maintained after 50 cycles. While the voltage range is broadened up to 2.5 and 4.6 V vs. Li+/Li, the special discharge capacities at 0.2 C, 0.5 C, 1 C, 2 C, 5 C, and 10 C rates are as high as 214.3, 205.0, 198.3, 183.3, 160.1 and 135.2 mAh g?1, respectively.  相似文献   

5.
The Co-free Li1.20Mn0.54Ni x Fe y O2 (x/y?=?0.5, 1.0, 2.0) materials were synthesized by combustion method. The effects of the preparation condition on the structure, morphology, and electrochemical performance were investigated by X-ray diffractometry, scanning electron microscopy, charge–discharge tests, and cyclic voltammetry (CV). The results indicate that the structure and electrochemical characteristics are sensitive to the preparation condition when a large amount of Fe is included. A pure layered α-NaFeO2 structure with R-3m space group and the discharge capacities of over 200 mAh g?1 were observed in some as-prepared cathode materials. Particularly, the Li1.2Mn0.54Ni0.13Fe0.13O2 prepared by mixing an excess amount of lithium and by firing at 600 °C exhibits a second discharge capacity of 264 mAh g?1 in the voltage range of 1.5–4.8 V under current density of 30 mA g?1 at 30 °C and discharge capacity of 223 mAh g?1 at 2.0–4.8 V. Nevertheless, an unpleasant capacity fading was observed and is primarily ascribed to transformation from a rock-layered structure into a spinel one according to CV testing.  相似文献   

6.
We used a simple chemical synthesis route to deposit nanorod-like cobalt oxide thin films on different substrates such as stainless steel (ss), indium tin oxide (ITO), and microscopic glass slides. The morphology of the films show that the films were uniformly spread having a nanorod-like structure with the length of the nanorods shortened on ss substrates. The electrochemical properties of the films deposited at different time intervals were studied using cyclic voltammetry (CV), galvanostatic charge–discharge (GCD), and electrochemical impedance spectroscopy (EIS). The film deposited after 20 cycles on ss gave the highest specific capacity of 67.6 mAh g?1 and volumetric capacity of 123 mAh cm?3 at a scan rate 5 mV s?1 in comparison to 62.0 mAh g?1 and 113 mAh cm?3 obtained, respectively, for its counterpart on ITO. The film electrode deposited after 20 cycles on ITO gave the best rate capability and excellent cyclability with no depreciation after 2000 charge–discharge cycles.  相似文献   

7.
The graphene anode was investigated in an ionic liquid electrolyte (0.7 M lithium bis(trifluoromethanesulfonyl)imide (LiNTf2)) in room temperature ionic liquid (N-methyl-N-propylpyrrolidinium bis(trifluoromethanesulfonyl)imide (MPPyrNTf2)). SEM and TEM images suggested that the electrochemical intercalation/deintercalation process in the ionic liquid electrolyte without vinylene carbonate (VC) leads to small changes on the surface of graphene particles. However, a similar process in the presence of VC results in the formation of a coating (SEI—solid electrolyte interface) on the graphene surface. During charging/discharging tests, the graphene electrode working together with the 0.7 M LiNTf2 in MPPyrNTf2 electrolyte lost its capacity, during cycling and stabilizes at ca. 200 mAh g?1 after 20 cycles. The addition of VC to the electrolyte (0.7 M LiNTf2 in MPPyrNTf2?+?10 wt.% VC) considerably increases the anode capacity. Electrodes were tested at different current regimes: ranging between 50 and 1,000 mA g?1. The capacity of the anode, working at a low current regime of 50 mA g?1, was ca. 1,250 mAh g?1, while the current of 500 mA g?1 resulted in capacity of 350 mAh g?1. Coulombic efficiency was stable and close to 95 % during ca. 250 cycles. The exchange current density, obtained from impedance spectroscopy, was 1.3?×?10?7 A cm?2 (at 298 K). The effect of the anode capacity decrease with increasing current rate was interpreted as the result of kinetic limits of the electrode operation.  相似文献   

8.
In this work, porous NiO microspheres interconnected by carbon nanotubes (NiO/CNTs) were successfully fabricated by the pyrolysis of nickel metal-organic framework precursors with CNTs and evaluated as anode materials for lithium-ion batteries (LIBs). The structures, morphologies, and electrochemical performances of the samples were characterized by X-ray diffraction, N2 adsorption-desorption, field emission scanning electron microscopy, cyclic voltammetry, galvanostatic charge/discharge tests, and electrochemical impedance spectroscopy, respectively. The results show that the introduction of CNTs can improve the lithium-ion storage performance of NiO/CNT composites. Especially, NiO/CNTs-10 exhibits the highest reversible capacity of 812 mAh g?1 at 100 mA g?1 after 100 cycles. Even cycled at 2 A g?1, it still maintains a stable capacity of 502 mAh g?1 after 300 cycles. The excellent electrochemical performance of NiO/CNT composites should be attributed to the formation of 3D conductive network structure with porous NiO microspheres linked by CNTs, which benefits the electron transfer ability and the buffering of the volume expansion during the cycling process.  相似文献   

9.
The SnO2 sheet/graphite composite was synthesized by a hydrothermal method for high-capacity lithium storage. The microstructures of products were characterized by XRD and FE-SEM. The electrochemical performance of SnO2 sheet/graphite composite was measured by galvanostatic charge/discharge cycling and EIS. The first discharge and charge capacities are 1,072 and 735 mAh g?1 with coulombic efficiency of 68.6 %. After 40 cycles, the reversible discharge capacity is still maintained at 477 mAh g?1. The results show that the SnO2 sheet/graphite composite displays superior Li-battery performance with large reversible capacity and good cyclic performance.  相似文献   

10.
The cathode-active materials, layered Li[Ni0.6Co0.2Mn0.2]O2, were synthesized by two different routes: spray-drying and solid-state methods. The influence of synthesis routes on the crystal structure, morphology, and electrochemical performance of the samples were characterized by X-ray diffraction, scanning electron microscope, and charge/discharge test. As a result, both samples showed a typical hexagonal structure with a single phase. However, the difference in synthesis route resulted in the difference in morphology and electrochemical performance, such as reversible capacity and the rate capability. The initial discharge capacity of sample synthesized by spray-drying method at room temperature and 50 °C were 173.1 and 181.2 mAh g?1, respectively, which were higher than those of 166.8 and 177.5 mAh g?1 for sample synthesized by solid-state method. The cycling performance was also evaluated. Sample synthesized by spray-drying method exhibits a higher discharge capacity and better cycling performance than those prepared by solid-state method, even at elevated temperature.  相似文献   

11.
Pure LiFePO4 and LiNi x Fe1?x PO4/C (x?=?0.00–0.20) nanocomposite cathode materials have been synthesized by cheap and convenient sol–gel-assisted carbothermal reduction method. X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy, and inductively coupled plasma have been used to study the phase, morphology, and chemical composition of un-doped and Ni-doped materials. XRD patterns display the slight shrinkage in crystal lattice of LiFePO4 after Ni2+ doping. The SEM images have revealed that Ni-doped particles are not agglomerated and the particle sizes are practically homogeneously distributed. The particle size is found between 50 and 100 nm for LiNi0.20Fe0.80PO4/C sample. The discharge capacity at 0.2 C rate has increased up to 155 mAh g?1 for the LiNi0.05Fe0.95PO4/C sample and good capacity retention of 99.1 % over 100 cycles, while that of the unsubstituted LiFePO4/C and pure LiFePO4 has showed only 122 and 89 mAh g?1, respectively. Doping with Ni has a noticeable effect on improving its electrical conductivity. However, serious electrochemical declension will occur when its doping density is beyond 0.05 mol LiNi0.20Fe0.80PO4/C electrode shows only 118 mAh g?1, which is less than un-doped LiFePO4/C sample at 0.2 C. The cycling voltammogram demonstrates that Ni-doped LiNi0.05Fe0.95PO4/C electrode has more stable lattice structure, enhanced conductivity, and diffusion coefficient of Li+ ions, in which Ni2+ is regarded to act as a column in crystal lattice structure to prevent the collapse during cycling process.  相似文献   

12.
In this work, flower-like SnO2/carbon nanotubes (CNTs) composite was synthesized by one-step hydrothermal method for high-capacity lithium storage. The microstructures of products were characterized by XRD, FESEM and TEM. The electrochemical performance of the flower-like SnO2/CNTs composite was measured by cyclic voltammetry and galvanostatic charge/discharge cycling. The results show that the flower-like SnO2/CNTs composite displays superior Li-battery performance with large reversible capacity and high rate capability. The first discharge and charge capacities are 1,230 and 842 mAh g?1, respectively. After 40 cycles, the reversible discharge capacity is still maintained at 577 mAh g?1 at the current densities of 50, 100 and 500 mA g?1, indicating that it’s a promising anode material for high performance lithium-ion batteries.  相似文献   

13.
LiNi0.80Co0.15Al0.05O2 (NCA) is explored to be applied in a hybrid Li+/Na+ battery for the first time. The cell is constructed with NCA as the positive electrode, sodium metal as the negative electrode, and 1 M NaClO4 solution as the electrolyte. It is found that during electrochemical cycling both Na+ and Li+ ions are reversibly intercalated into/de-intercalated from NCA crystal lattice. The detailed electrochemical process is systematically investigated by inductively coupled plasma-optical emission spectrometry, ex situ X-ray diffraction, scanning electron microscopy, cyclic voltammetry, galvanostatic cycling, and electrochemical impedance spectroscopy. The NCA cathode can deliver initially a high capacity up to 174 mAh g?1 and 95% coulombic efficiency under 0.1 C (1 C?=?120 mA g?1) current rate between 1.5–4.1 V. It also shows excellent rate capability that reaches 92 mAh g?1 at 10 C. Furthermore, this hybrid battery displays superior long-term cycle life with a capacity retention of 81% after 300 cycles in the voltage range from 2.0 to 4.0 V, offering a promising application in energy storage.  相似文献   

14.
The Li(Ni0.33Co0.33Mn0.33)O2 (LNCMO) cathode material is prepared by poly(vinyl pyrrolidone) (PVP)-assisted sol-gel/hydrothermal and poly(ethylene glycol)-block-poly(propylene glycol)-block-poly (ethylene glycol) (Pluronic-P123)-assisted hydrothermal methods. The compound prepared by PVP-assisted hydrothermal method shows a comparatively higher electrical conductivity of ~2?×?10?5 S cm?1 and exhibits a discharge capacity of 152 mAh g?1 in the voltage range of 2.5 to 4.4 V, for a C-rate of 0.2 C, whereas the compounds prepared by P123-assisted hydrothermal method and PVP-assisted sol-gel method show a total electrical conductivity in the order of 10?6 S cm?1 and result in poor electrochemical performance. The structural and electrical properties of LNCMO (active material) and its electrochemical performance are correlated. The difference in percentage of ionic and electronic conductivity contribution to the total electrical conductivity is compared by transference number studies. The cation disorder is found to be the limiting factor for the lithium ion diffusion as determined from ionic conductivity values.  相似文献   

15.
Lithium-rich manganese oxide (Li2MnO3) is prepared by reverse microemulsion method employing Pluronic acid (P123) as a soft template and studied as a positive electrode material. The as-prepared sample possesses good crystalline structure with a broadly distributed mesoporosity but low surface area. As expected, cyclic voltammetry and charge–discharge data indicate poor electrochemical activity. However, the sample gains surface area with narrowly distributed mesoporosity and also electrochemical activity after treating in 4 M H2SO4. A discharge capacity of about 160 mAh g?1 is obtained. When the acid-treated sample is heated at 300 °C, the resulting porous sample with a large surface area and dual porosity provides a discharge capacity of 240 mAh g?1. The rate capability study suggests that the sample provides about 150 mAh g?1 at a specific discharge current of 1.25 A g?1. Although the cycling stability is poor, the high rate capability is attributed to porous nature of the material.  相似文献   

16.
The electrochemical hydrogen storage properties of Ni-supported multi-walled carbon nanotube (Ni/MWCNT) electrodes were investigated using charge/discharge (C&D) and cyclic voltammetry (CV) techniques. Nickel NPs were deposited on the MWCNT surface, which was first chemically oxidized by H2SO4 and HNO3 (3:1, v/v). Hydrogen storage was carried out by using the Ni/MWCNT electrode as the working electrode in the electrochemical cell. A set of various current densities were applied to the cell to produce (C&D) cycles, and it became optimum corresponding to 1.5 mA current. According to the electrochemical test results, the highest electrochemical discharge capacity of 1625 mAh g?1 was obtained for the electrode with ratio of 4:1 (MWCNTs to Ni) in the initial cycle, which corresponded to 6.07 wt% H2. The storage capacity was increased and reached to 4909 mAh g?1 (18.34 wt% H2) after 20 cycles, and the electrode maintained the specific capacity as cycling continued. Thus, the Ni/MWCNT electrode displays an excellent cycle stability and a high capacity reversibility. CV measurements also showed that the electrochemical adsorption and desorption amount of hydrogen was increased by Ni loading onto the CNTs and indicated that the electrochemical hydrogen adsorption of the electrode has an activated period.  相似文献   

17.
LiMn2O4 microcubes with a size of 10–15 μm have been synthesized by a facile self-templating route starting from cubic MnCO3. The LiMn2O4 microcubes exhibit a hierarchical structure, where the cubes are stacked from parallel plates with a thickness of 200 nm, where each plate is composed of interconnected nanoparticles with a size of around 200 nm. The cubic LiMn2O4 shows excellent rate capability and high-rate cycling stability. At 10 C, it can yield a discharge capacity of 108 mAh g?1. A discharge capacity of 88 mAh g?1 can be retained after 100 cycles at 10 C. The excellent electrochemical performance makes it a promising cathode for high-power Li-ion batteries.  相似文献   

18.
Pure porous hollow Zn ferrite (ZnFe2O4) microspheres have been successfully synthesized by a facile bubble assisted method in the presence of ammonium acetate (NH4Ac) as an anode material in lithium ion battery. The shape, size, and morphology of Zn ferrite are investigated by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. Furthermore, the probable bubble-assisted formation mechanism of porous hollow Zn ferrite spheres based on the experimental results is proposed. With the porous hollow structure, the obtained pure Zn ferrite particle as an anode in lithium ion battery demonstrates high capacity and excellent cycle ability. The high initial discharge specific capacity is approximately 1,400 mAh g?1 and a reversible specific capacity approaches 584 mAh g?1 after 100 cycles at a constant current density of 100 mA g?1. The excellent electrochemical performance of the as-prepared Zn ferrite could be attributed to the special structure with which the volume expansion and pulverization of the particles became increasingly reduced.  相似文献   

19.
采用XRD、FESEM-EDS、ICP及EIS等方法研究了Ti0.17Zr0.08V0.34Nb0.01Cr0.1Ni0.3氢化物电极合金微观结构和电化学性能。X射线衍射分析表明:该合金由体心立方结构(bcc)的V基固溶体主相和少量六方结构的C14型Laves相组成;FESEM及EDS分析表明:V基固溶体主相形成树枝晶,C14型Laves相呈网格状围绕着树枝晶的晶界,元素在两相中的分布呈现镜像关系。电化学性能测试结果表明:该合金的氢化物电极在303~343 K较宽的温度区间内,表现出较高的电化学容量,在303 K和343 K时,电化学容量分别为337.0 mAh·g-1和327.9 mAh·g-1。在303 K循环100周后,容量为282.7 mAh·g-1。ICP分析结果表明,氢化物电极在充放电循环过程中,V及Zr元素向KOH电解质中的溶出较为严重。EIS研究表明,金属氢化物电极表面电化学反应的电荷转移电阻(RT)随循环次数的增加而增加,相应的交换电流密度则随循环次数的增加而降低。氢化物电极循环过程中RT的增大以及V和Zr元素的溶解,可能是导致电极容量衰减的主要原因。  相似文献   

20.
In this work, a novel pyrrolic nitrogen-doped carbon sandwiched monolayer MoS2 hybrid was prepared. This sandwiched hybrid vertically anchors on graphene oxide as anode materials for sodium-ion batteries. Such electrode was fabricated by facile ionic liquid-assisted reflux and annealing methods. Owing to rational structure and enhancement from pyrrolic nitrogen dopant, this unique MoS2/C-graphene hybrid exhibits reversible specific capacity of 486 mAh g?1 after 1000 cycles with a low average fading capacity of 0.15 mAh g?1 (fading cyclic rate of ca. 0.03% per cycle). A capacity of 330 mAh g?1 is remained at the current densities of 10.0 A g?1. The proposed strategy provides a convenient way to create new pyrrolic nitrogen-doped hybrids for energy field and other related applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号