首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Compounds (η-C5R5)Fe[η-9-(Me2S)-7,8-C2B9H10] (R=H, Me) and (η-C4Me4)Co[η-9-(Me2S)-7,8-C2B9H10] were synthesized by the reactions of Na[9-(Me2S)-7,8-C2B9H10] with complexes [(η-C5H5)Fe(MeCN)3]PF6, [(η-C5Me5)Fe(MeCN)3]BF4, and [(η-C4Me4)Co(MeCN)3]PF6, respectively. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 177–179, January, 1999.  相似文献   

2.
The reaction of [(η-C7H7)Mo(MeCN)3)]BF4 with (η-C5Me5)Fe(η-P5) afforded the new 30-electron triple-decker complex [(η-C7H7)Mo(μ-η:η-P5)Fe(η-C5Me5)]BF4. Studies of the temperature dependence of the1H NMR spectra demonstrated that the resulting compound contains a fluxional cyclohepatrienyl ligand. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 7, pp. 1374–1376, July, 1999.  相似文献   

3.
30-Electron triple-decker complexes [(η-C5H5)Fe(μ-η:η-C4Me4P)Fe(η-C5Me5)]PF6 and [(η-C4Me4)Co(μ-η:η-C4Me4P)Fe(η-C5Me5)]PF6 with a central tetramethylphospholyl ligand were synthesized by stacking reactions of cationic fragments [(η-C5H5)Fe]+ and [(η-C4Me4)Co]+ with nonamethylphosphaferrocene (η-C4Me4P)Fe(η-C5Me5). Published inIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1647–1649, September, 2000.  相似文献   

4.
Irradiation of the cation [η-C5Me4H)Fe(η-C6H6)]++ (1) and ButNC with visible light in acetonitrile results in the displacement of the benzene ligand, giving [(η-C5Me4H)Fe(ButNC)3]+ (2). Reactions of complex 1 with P(OR)3 and dppe in MeCN yield the complexes [(η-C5Me4H)-Fe(MeCN)P(OR)3 2]+ (R = Me (3) and Et (4)) and [(η-C5Me4H)Fe(MeCN)(dppe)]+ (5) containing two Fe—P bonds. The same reactions in CH2Cl2 give the tris(phosphite) complexes [(η-C5Me4H)FeP(OR)3 3]+ (6, 7). A photochemical reaction of complex 1 with pentaphos-phaferrocene Cp*Fe(η-cyclo-P5) yields the triple-decker cation [(η-C5Me4H)Fe(μ-η:η-cyclo-P5)FeCp*]+ (8) with a bridging pentaphospholyl ligand. Structures [2]PF6 and [3]PF6 were identified by X-ray diffraction.  相似文献   

5.
The previously unknown metallacarboranes (η-C5R5)Ru(η-9-Me2S-7,8-C2B9H10) (R=H or Me) and (η-C5H5)Ni(η-9-Me2S-7,8-C2B9H10) were prepared and used in the synthesis of the first metallacarborane triple-decker complexes with a central cyclopentadienyl ligand, viz., [(η-C5R5)Ru(μ-η:η-C5Me5)Ru(η-9-Me2S-7,8-C2B9H10)]PF6 (R=H or Me), [(η-9-Me2S-7,8-C2B9H10)Ni(μ-η:η-C5H5)Ni(η-9-Me2S-7,8-C2B9H10)]PF6, and [(η-C5H5)Ni(μ-η:η-C5H5)Ni(η-9-Me2S-7,8-C2B9H10)]BF4. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 7, pp. 1368–1373, July, 1999.  相似文献   

6.
The visible light irradiation of the [(η5-C6H7)Fe(η-C6H6)]+ cation (1) in acetonitrile resulted in the substitution of the benzene ligand to form the labile acetonitrile species [(η5-C6H7)Fe(MeCN)3]+ (2). The reaction of 1 with ButNC in MeCN produced the stable isonitrile complex [(η5-C6H7)Fe(ButNC)3]+ (3). The photochemical reaction of cation 1 with pentaphosphaferrocene Cp*Fe(η-cyclo-P5) afforded the triple-decker cation with the bridging pentaphospholyl ligand, [(η5-C6H7)Fe(μ-η:η-cyclo-P5)FeCp*]+ (4). The latter complex was also synthesized by the reaction of cation 2 with Cp*Fe(η-cyclo-P5). The structure of the complex [3]PF6 was established by X-ray diffraction. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 2088–2091, November, 2007.  相似文献   

7.
The parent 30-electron triple-decker iron complex with cyclopentadienyl ligands, [(η-C5H5)Fe(μ-η:η-C5H5)Fe(η-C5H5)]PF6 (1), was prepared for the first time by visible-light irradiation of ferrocene and [(η-C5H5)Fe(η-C6H6)]PF6 in CH2Cl2 at 0 °C. An analogous reaction performed with the use of (η-C5H5)Co(η-C4Me4) (2) instead of ferrocene afforded the thermally labile 30-electron cationic iron-cobalt triple-decker complex [(η-C5H5)Fe(μ-η:η-C5H5)Co(η-C4Me4)]PF6. The latter reacted with compound 2 at 20 °C to form the symmetrical 30-electron cationic dicobalt triple-decker complex [(η-C4Me4)Co(μ-η:η-C5H5)Co(η-C4Me4)] PF6. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya. No. 7, pp. 1364–1367, July, 1999.  相似文献   

8.
    
The reaction of [{(η5-C5Me5)M(μ-Cl)Cl}2] {where M = Rh (1), Ir (2)} with functionalized phosphine viz., diphenyl-2-pyridylphosphine (PPh2Py) in dichloromethane solvent yield neutral ϰ1-P-coordinated rhodium and iridium complexes [(η5-C5Me5)RhCl21-P-PPh2Py)]3 and [(η5-C5Me5) IrCl21-P-PPh2Py)]4. Reaction of complexes 1 and 2 with the ligand PPh2Py in methanol under reflux give bis-substituted complexes such as [(η5-C5Me5)RhCl(ϰ1-P-PPh2Py)2]+ 5 and [(η5-C5Me5)IrCl(ϰ1-P-PPh2Py)2]+ 6, whereas stirring in methanol at room temperature gives P-, N-chelating complexes of the type [(η5-C5Me5)RhCl(ϰ2-P-N-PPh2Py)]+ 7 and [(η5-C5Me5)IrCl(ϰ2-P-N-PPh2Py)]+ 8. Neutral ϰ1-P-coordinated complexes [(η5-C5Me5)RhCl21-P-PPh2Py)]3 and [(η5-C5Me5)IrCl21-P-PPh2Py)]4 easily undergo conversion to the cationic P-, N-chelating complexes [(η5-C5Me5)RhCl(ϰ2-P-N-PPh2Py)]+ 7 and [(η5-C5Me5) IrCl(ϰ2-P, N-PPh2Py)]+ 8 on stirring in methanol at room temperature. These complexes are characterized by FT-IR and FT-NMR spectroscopy as well as analytical methods. The molecular structures of the representative complexes [(η5-C5Me5)RhCl21-P-PPh2Py)]3, [(η5-C5Me5)IrCl21-P-PPh2Py)]4 and hexafluorophosphate salt of complex [(η5-C5Me5)IrCl(ϰ2-P-PPh2Py)2]+ 6 are established by single-crystal X-ray diffraction methods  相似文献   

9.
The reduction behavior of the isoelectronic complexes [CpMIII6-C6R6)]2+ (M=Rh, Ir; R=H, Me) and [(η-9-SMe2-7,8-C2B9H10)MIII6-C6R6)]2+ (M=Rh, Ir; C6R6 = C6H6, C6H5OMe, C6H3Me3) has been studied by cyclic voltammetry and controlled potential coulometry in acetonitrile and propylene carbonate at 253 and 298 K, respectively. The extent of chemical reversibility of the pertinent sequences Rh(III)/Rh(II)/Rh(I) and Ir(III)/Ir(I) is highly dependent on both the nature of the solvent and the intrinsic electronic properties of the arene substituents. The arene η6 coordination makes the derivatives in their lower oxidation states notably short lived, even if, in some cases, the use of propylene carbonate improves their stability or causes the increase in their lifetimes before changing the arene coordination from η6 to η4. Cations [(η-9-SMe2-7,8-C2B9H10)M(η6-C6R6)]2+ were obtained by the bromide abstraction from [(η-9-SMe2-7,8-C2B9H10)MBr2]2 with Ag+ in the presence of benzene and its derivatives. The structure of [(η-9-SMe2-7,8-C2B9H10)Ir(η6-C6H5OMe)](BF4)2 was determined by X-ray diffraction.  相似文献   

10.
Visible light irradiation of the [(η-C6H7)Fe(η-C6H6)]+ cation (1) in CH2Cl2 in the presence of alkyl-substituted benzenes results in arene exchange forming the [(η5-C6H7)Fe(η-C6R6)]+ cations (2a–d: C6R6 is toluene, p-xylene, mesitylene, and durene). The mixed bis(arene) [(η-C6H6)Fe(η-C6R6)]2+ iron complexes (3a–d) were synthesized by hydride ion abstraction from 2a–d by [Ph3C]+. Dedicated to Academician G. A. Abakumov on the occasion of his 70th birthday. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1864–1865, September, 2007.  相似文献   

11.
The first unsymmetrical 34-electron cationic cobalt-nickel triple-decker complex with a central cyclopentadienyl ligand [(η-C6Me6)Co(μ-η:η-C5H5)Ni(η-C5)PF6 was prepared by the reaction of [(η-C6Me6)2Co]PF6 with nickelocene. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 4, pp. 798–799, April, 1999.  相似文献   

12.
The reactions of the Me n C6H6−n M(CO)3 (M=Cr, Mo, W;n=3, 5, 6) and C5R5M(CO)3 (M=Mn, Re; R=H, Me) complexes with propargyl alcohol in acidic media under UV irradiation were studied. Novel Me n C6H6−n M(CO)23-C3H3)BF4 (M=Mo, W;n=3, 5, 6) and C5R5Re(CO)23-C3H3)CF3SO3 complexes with the 3ē-propargyl ligand were synthesized, and their properties compared with those of similar η3-allyl derivatives. The structure and dynamic propeties of the compounds obtained are discussed. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1796–1803, September, 1999.  相似文献   

13.
Diimido, Imido Oxo, Dioxo, and Imido Alkylidene Halfsandwich Compounds via Selective Hydrolysis and α—H Abstraction in Molybdenum(VI) and Tungsten(VI) Organyl Complexes Organometal imides [(η5‐C5R5)M(NR′)2Ph] (M = Mo, W, R = H, Me, R′ = Mes, tBu) 4 — 8 can be prepared by reaction of halfsandwich complexes [(η5‐C5R5)M(NR′)2Cl] with phenyl lithium in good yields. Starting from phenyl complexes 4 — 8 as well as from previously described methyl compounds [(η5‐C5Me5)M(NtBu)2Me] (M = Mo, W), reactions with aqueous HCl lead to imido(oxo) methyl and phenyl complexes [(η5‐C5Me5)M(NtBu)(O)(R)] M = Mo, R = Me ( 9 ), Ph ( 10 ); M = W, R = Ph ( 11 ) and dioxo complexes [(η5‐C5Me5)M(O)2(CH3)] M = Mo ( 12 ), M = W ( 13 ). Hydrolysis of organometal imides with conservation of M‐C σ and π bonds is in fact an attractive synthetic alternative for the synthesis of organometal oxides with respect to known strategies based on the oxidative decarbonylation of low valent alkyl CO and NO complexes. In a similar manner, protolysis of [(η5‐C5H5)W(NtBu)2(CH3)] and [(η5‐C5Me5)Mo(NtBu)2(CH3)] by HCl gas leads to [(η5‐C5H5)W(NtBu)Cl2(CH3)] 14 und [(η5‐C5Me5)Mo(NtBu)Cl2(CH3)] 15 with conservation of the M‐C bonds. The inert character of the relatively non‐polar M‐C σ bonds with respect to protolysis offers a strategy for the synthesis of methyl chloro complexes not accessible by partial methylation of [(η5‐C5R5)M(NR′)Cl3] with MeLi. As pure substances only trimethyl compounds [(η5‐C5R5)M(NtBu)(CH3)3] 16 ‐ 18 , M = Mo, W, R = H, Me, are isolated. Imido(benzylidene) complexes [(η5‐C5Me5)M(NtBu)(CHPh)(CH2Ph)] M = Mo ( 19 ), W ( 20 ) are generated by alkylation of [(η5‐C5Me5)M(NtBu)Cl3] with PhCH2MgCl via α‐H abstraction. Based on nmr data a trend of decreasing donor capability of the ligands [NtBu]2— > [O]2— > [CHR]2— ? 2 [CH3] > 2 [Cl] emerges.  相似文献   

14.
The reaction of the iodide complex [(η5-C9H2Me5)RhI2]2 (1) or the acetonitrile complex [(η5-C9H2Me5)Rh(MeCN)3]2+ with Tl[Tl(η-7,8-C2B9H11)] afforded rhodacarborane (η5-C9H2Me5)Rh(7,8-C2B9H11) (2). The cationic triple-decker complex with the bridging boratabenzene ligand [Cp*Fe(μ-η:η-C5H3Me2BMe)Rh(η5-C9H2Me5)]2+ (3) was synthesized by the reaction of the nitromethane solvate [(η5-C9H2Me5)Rh(MeNO2)3]2+ with the sandwich compound Cp*Fe(η-C5H3Me2BMe). The structure of 2 was established by X-ray diffraction. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 1623–1625, August, 2008.  相似文献   

15.
Synthesis, Structure, and Reactivity of Functionalized Stibanido Complexes of Iron and Ruthenium [(η5-C5Me5)(CO)2MSbR1R2] (M = Fe, Ru; R1, R2 = SiMe3, C(O) t Bu, C(O)Ph, C(O)-1 Ad) The reaction of equimolar amounts of [(η5-C5Me5)(CO)2RuSb(SiMe3)2] ( 1 b ) and the carboxylic chlorides RC(O)Cl (R = tBu, Ph, 1-adamantyl) afforded the acyl(trimethylsilyl)stibanido complexes [(η5-C5Me5)(CO)2RuSb · {C(O)R}(SiMe3)] 2 b (R = tBu), 4 b (R = Ph), and 6 b (R = 1-Ad). The treatment of 1 b with two molar equivalents of pivaloyl chloride and benzoyl chloride led to the diacylstibanido complexes [(η5-C5Me5)(CO)2RuSb{C(O)R}2] ( 3 b , 5 b ). Analogously, the iron complex [(η5-C5Me5)(CO)2FeSb · (SiMe3)2] ( 1 a ) is converted into the corresponding diacylstibanido complexes 3 a (R = tBu), 5 a (R = Ph) and 7 a (R = 1-Ad) by an excess of acid chloride. The treatment of 1 a with equimolar amounts of RC(O)Cl gave inseparable mixtures of starting material and the monoacyl- and diacyl stibanido complexes. Oxalyl chloride reacted quantitatively with two equivalents of 1 a to give complex [{(η5-C5Me5) · (CO)2FeSb(SiMe3)C(O)}2] ( 8 ). The molecular structures of 1 a , 2 b and 5 b were elucidated by single crystal X-ray analyses.  相似文献   

16.
A series of are necyc lope ntadienyl complexes,i. e., [Ru(5-c5R5)(6- are ne)]+ (1, R= H, arene = C6H6; 2, R = Me, arme = C6H6; 3, R = H, arctic = C6H3Me3; 4, R = Me, arene = C6H3Me3; 5, R = H, arene = C6Me6; 6, R = Me, arene = C6Me6) was studied by cyclic voltammetry. These compounds are capable of both oxidation and reduction. The reduction potential values depend on the number of methyl groups in the complex. Reduction of benzene complexes I and 2 by sodium amalgam in THF leads to the formation of decomplexation products, the addition of hydrogen to benzene, and dimerization of the benzene ligands. Both chemical and electrochemical reductions of mesitylene complexes3 and4 result in dimeric products [(5-C5R5)Ru(-5;5-Me3H3C6H3Me3)Ru(5-C5R5)] (14, R = H; 15, R = Me). The action of sodium amalgam on compound5 gives products of hydrogen addition to both hexamethylbenzene (17) and cyclopentadienyl (18) ligands along with the major product, the dimer [5-C5H5)Ru(-5; 5-Me6C6C6Me6)Ru(5-C5H5)] (16). In contrast to5, its permcthylated analog 6 is only capable of adding hydrogen to the hexamethylbenzene ligand.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 7, pp. 1691–1697, July, 1996.  相似文献   

17.
A linear correlation of chemical shifts (δ) of signals in the 13C NMR spectra of the unsubstituted terminal carbon atom of the allyl ligand in [(1-R-η3-C3H4)Pd]NO3 (R = Me, CH2OMe, CO2Me, COMe, CHO) with the substituent constants σ+ and σs- in acetone solutions was found. A considerable deviation from linearity was observed for R = Ph. The 13C nuclear magnetic screening constants were calculated by the DFT method in the GIAO approximation for equilibrium geometries of the cations [(1-R-η3-C3H4)Pd(Me2C=0)2]+ and anions [(1-R-η3-C3H4)PdCl2]s-. In the latter case, the theoretical and experimental δ values are consistent. The influence of the substituent R on the geometric parameters and charges on atoms in the neutral, anionic, and cationic η3-allylpalladium complexes is discussed.  相似文献   

18.
The preparation of a series of titanium half-sandwich compounds [Ti(η5-C5H5−x (SiMe3) x R3] (x = 1–3, R = Cl, Me) and their reactivity for propene polymerization is reported. The compounds 1–3 polymerize propene, albeit in a much lower activity than the reported [Ti(η5-C5Me5Me3]/B(C6F5)3 catalyst. Unlike the reported [Ti(η5-C5Me5Me3]/B(C6F5)3 catalyst, the quasi living polymerization was not observed. Instead, we observe rather unusual temperature effects when the trityl salt [Ph3C][B(C6F5)4] was used as activator. The activity increases with increasing temperature, whereas when B(C6F5)3 is used a decrease is observed The rather broad (>2) PDI indicates multisite catalysts, and 13C-NMR indicates predominantly atactic polypropene. The solid state structure of the hydrolysis product [{Ti(η5-C5H4(SiMe3)Cl2}O] (4) was determined.  相似文献   

19.
Novel bimetallic Ru-Pt and Fe-Pt complexes, [M(C5R5)(L)21-P4)]Y (M = Ru, Fe; R = H, Me; L = PPh3, 1/2Dppf (Ph2P(C5H4)Fe(C5H4)PPh2), 1/2Dppe (Ph2PCH2CH2PPh2); Y = PF6, CF3SO3, BPh4) were synthesized for the first time by the reaction of η1-tetraphosphorus complexes of ruthenium(II) and iron(II), [M(C5R5)(L)21-P4)]Y with platinum(0) complex [Pt(η2-C2H4)(PPh3)2] in acetone. The structures and compositions of the title complexes were studied by the 31P NMR, correlated 31P-31P NMR COSY, NOESY, 1H-spectroscopy, and elemental analysis. The carbene-like fragment Pt(PPh3)2 generated in situ was found to be inserted at the P-P bond of the η1-coordinated tetraphosphorus and migrate between the phosphorus atoms of the obtained ligand μ, η1: η2-P4. The exchange process in the novel complexes was investigated. Original Russian Text ? D.N. Akbayeva, 2007, published in Koordinatsionnaya Khimiya, 2007, Vol. 33, No. 9, pp. 673–680.  相似文献   

20.
The [60]fulleride of bis(η-hexamethylbenzene)chromium(I) [(η6-C6Me6)2Cr]⋅+[C60]⋅−, and the complexes C60·C6Me6 and C60·C6Et6 were synthesized. Thermal decomposition of [(η6-C6Me6)2Cr]⋅+[C60]⋅− was studied. The molecular structures of C60·C6Me6 and C60·C6Et6 were determined. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 220—224, February, 2006.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号