首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A graph G is called an (n,k)-graph if κ(G-S)=n-|S| for any S ? V(G) with |S| ≤ k, where ?(G) denotes the connectivity of G. Mader conjectured that for k ≥ 3 the graph K2k+2?(1-factor) is the unique (2k, k)-graph. Kriesell has settled two special cases for k = 3,4. We prove the conjecture for the general case k ≥ 5.  相似文献   

2.
A graph is 1-planar if it can be drawn on the plane so that each edge is crossed by at most one other edge. In this paper, we verify the total coloring conjecture for every 1-planar graph G if either Δ(G) ≥ 9 and g(G) ≥ 4, or Δ(G) ≥ 7 and g(G) ≥ 5, where Δ(G) is the maximum degree of G and g(G) is the girth of G.  相似文献   

3.
Let G be a graph and k ≥ 2 a positive integer. Let h: E(G) → [0, 1] be a function. If \(\sum\limits_{e \mathrel\backepsilon x} {h(e) = k} \) holds for each xV (G), then we call G[Fh] a fractional k-factor of G with indicator function h where Fh = {eE(G): h(e) > 0}. A graph G is fractional independent-set-deletable k-factor-critical (in short, fractional ID-k-factor-critical), if G ? I has a fractional k-factor for every independent set I of G. In this paper, we prove that if n ≥ 9k ? 14 and for any subset X ? V (G) we have
$${N_G}(X) = V(G)if|X| \geqslant \left\lfloor {\frac{{kn}}{{3k - 1}}} \right\rfloor ;or|{N_G}(X)| \geqslant \frac{{3k - 1}}{k}|X|if|X| < \left\lfloor {\frac{{kn}}{{3k - 1}}} \right\rfloor ,$$
then G is fractional ID-k-factor-critical.
  相似文献   

4.
For a positive integer m, let f(m) be the maximum value t such that any graph with m edges has a bipartite subgraph of size at least t, and let g(m) be the minimum value s such that for any graph G with m edges there exists a bipartition V (G)=V 1?V 2 such that G has at most s edges with both incident vertices in V i . Alon proved that the limsup of \(f\left( m \right) - \left( {m/2 + \sqrt {m/8} } \right)\) tends to infinity as m tends to infinity, establishing a conjecture of Erd?s. Bollobás and Scott proposed the following judicious version of Erd?s' conjecture: the limsup of \(m/4 + \left( {\sqrt {m/32} - g(m)} \right)\) tends to infinity as m tends to infinity. In this paper, we confirm this conjecture. Moreover, we extend this conjecture to k-partitions for all even integers k. On the other hand, we generalize Alon's result to multi-partitions, which should be useful for generalizing the above Bollobás-Scott conjecture to k-partitions for odd integers k.  相似文献   

5.
Let G be a graph and let its maximum degree and maximum average degree be denoted by Δ(G) and mad(G), respectively. A neighbor sum distinguishing k-edge colorings of graph G is a proper k-edge coloring of graph G such that, for any edge uvE(G), the sum of colors assigned on incident edges of u is different from the sum of colors assigned on incident edges of v. The smallest value of k in such a coloring of G is denoted by χ(G). Flandrin et al. proposed the following conjecture that χ (G) ≤ Δ(G) + 2 for any connected graph with at least 3 vertices and GC5. In this paper, we prove that the conjecture holds for a normal graph with mad(G) < \(\tfrac{{37}}{{12}}\) and Δ(G) ≥ 7.  相似文献   

6.
Let G and H be two graphs. We say that G induces H if G has an induced subgraph isomorphic to H: A. Gyárfás and D. Sumner, independently, conjectured that, for every tree T. there exists a function f T ; called binding function, depending only on T with the property that every graph G with chromatic number f T (ω(G)) induces T. A. Gyárfás, E. Szemerédi and Z. Tuza confirmed the conjecture for all trees of radius two on triangle-free graphs, and H. Kierstead and S. Penrice generalized the approach and the conclusion of A. Gyárfás et al. onto general graphs. A. Scott proved an interesting topological version of this conjecture asserting that for every integer k and every tree T of radius r, every graph G with ω(G) ? k and sufficient large chromatic number induces a subdivision of T of which each edge is subdivided at most O(14 r-1(r - 1)!) times. We extend the approach of A. Gyárfás and present a binding function for trees obtained by identifying one end of a path and the center of a star. We also improve A. Scott's upper bound by modifying his subtree structure and partition technique, and show that for every integer k and every tree T of radius r, every graph with ω(G) ? k and sufficient large chromatic number induces a subdivision of T of which each edge is subdivided at most O(6 r?2) times.  相似文献   

7.
Let g be an element of a finite group G. For a positive integer n, let E n (g) be the subgroup generated by all commutators [...[[x, g], g],..., g] over xG, where g is repeated n times. By Baer’s theorem, if E n (g) = 1, then g belongs to the Fitting subgroup F(G). We generalize this theorem in terms of certain length parameters of E n (g). For soluble G we prove that if, for some n, the Fitting height of E n (g) is equal to k, then g belongs to the (k+1)th Fitting subgroup Fk+1(G). For nonsoluble G the results are in terms of nonsoluble length and generalized Fitting height. The generalized Fitting height h*(H) of a finite group H is the least number h such that Fh* (H) = H, where F0* (H) = 1, and Fi+1(H)* is the inverse image of the generalized Fitting subgroup F*(H/F*i (H)). Let m be the number of prime factors of |g| counting multiplicities. It is proved that if, for some n, the generalized Fitting height of E n (g) is equal to k, then g belongs to F*f(k,m)(G), where f(k, m) depends only on k and m. The nonsoluble length λ(H) of a finite group H is defined as the minimum number of nonsoluble factors in a normal series each of whose factors either is soluble or is a direct product of nonabelian simple groups. It is proved that if λ(E n (g)) = k, then g belongs to a normal subgroup whose nonsoluble length is bounded in terms of k and m. We also state conjectures of stronger results independent of m and show that these conjectures reduce to a certain question about automorphisms of direct products of finite simple groups.  相似文献   

8.
Let ?: E(G) → {1, 2, · · ·, k} be an edge coloring of a graph G. A proper edge-k-coloring of G is called neighbor sum distinguishing if \(\sum\limits_{e \mathrel\backepsilon u} {\phi \left( e \right)} \ne \sum\limits_{e \mathrel\backepsilon v} {\phi \left( e \right)} \) for each edge uvE(G). The smallest value k for which G has such a coloring is denoted by χΣ(G), which makes sense for graphs containing no isolated edge (we call such graphs normal). It was conjectured by Flandrin et al. that χΣ(G) ≤ Δ(G) + 2 for all normal graphs, except for C5. Let mad(G) = \(\max \left\{ {\frac{{2\left| {E\left( h \right)} \right|}}{{\left| {V\left( H \right)} \right|}}|H \subseteq G} \right\}\) be the maximum average degree of G. In this paper, we prove that if G is a normal graph with Δ(G) ≥ 5 and mad(G) < 3 ? \(\frac{2}{{\Delta \left( G \right)}}\), then χΣ(G) ≤ Δ(G) + 1. This improves the previous results and the bound Δ(G) + 1 is sharp.  相似文献   

9.
Erdoes and Soes conjectured in 1963 that every graph G on n vertices with edge number e(G) 〉 1/2(k - 1)n contains every tree T with k edges as a subgraph. In this paper, we consider a variation of the above conjecture, that is, for n 〉 9/ 2k^2 + 37/2+ 14 and every graph G on n vertices with e(G) 〉 1/2 (k- 1)n, we prove that there exists a graph G' on n vertices having the same degree sequence as G and containing every tree T with k edges as a subgraph.  相似文献   

10.
An r-dynamic coloring of a graph G is a proper coloring c of the vertices such that |c(N(v))| ≥ min {r, deg(v)}, for each vV (G). The r-dynamic chromatic number of a graph G is the smallest k such that G admits an r-dynamic coloring with k colors. In this paper, we obtain the r-dynamic chromatic number of the line graph of helm graphs Hn for all r between minimum and maximum degree of Hn. Moreover, our proofs are constructive, what means that we give also polynomial time algorithms for the appropriate coloring. Finally, as the first, we define an equivalent model for edge coloring.  相似文献   

11.
The generalized k-connectivity κ k (G) of a graph G was introduced by Chartrand et al. in 1984. As a natural counterpart of this concept, Li et al. in 2011 introduced the concept of generalized k-edge-connectivity which is defined as λ k (G) = min{λ(S): S ? V (G) and |S| = k}, where λ(S) denotes the maximum number l of pairwise edge-disjoint trees T 1, T 2, …, T l in G such that S ? V (T i ) for 1 ? i ? l. In this paper we prove that for any two connected graphs G and H we have λ 3(GH) ? λ 3(G) + λ 3(H), where GH is the Cartesian product of G and H. Moreover, the bound is sharp. We also obtain the precise values for the generalized 3-edge-connectivity of the Cartesian product of some special graph classes.  相似文献   

12.
Let H be a connected graph and G be a supergraph of H. It is trivial that for any k-flow (Df) of G, the restriction of (Df) on the edge subset E(G / H) is a k-flow of the contracted graph G / H. However, the other direction of the question is neither trivial nor straightforward at all: for any k-flow \((D',f')\) of the contracted graph G / H, whether or not the supergraph G admits a k-flow (Df) that is consistent with \((D',f')\) in the edge subset E(G / H). In this paper, we will investigate contractible configurations and their extendability for integer flows, group flows, and modulo orientations. We show that no integer flow contractible graphs are extension consistent while some group flow contractible graphs are also extension consistent. We also show that every modulo \((2k+1)\)-orientation contractible configuration is also extension consistent and there are no modulo (2k)-orientation contractible graphs.  相似文献   

13.
A graph G is vertex pancyclic if for each vertex \({v \in V(G)}\) , and for each integer k with 3 ≤ k ≤ |V(G)|, G has a k-cycle C k such that \({v \in V(C_k)}\) . Let s ≥ 0 be an integer. If the removal of at most s vertices in G results in a vertex pancyclic graph, we say G is an s-vertex pancyclic graph. Let G be a simple connected graph that is not a path, cycle or K 1,3. Let l(G) = max{m : G has a divalent path of length m that is not both of length 2 and in a K 3}, where a divalent path in G is a path whose interval vertices have degree two in G. The s-vertex pancyclic index of G, written vp s (G), is the least nonnegative integer m such that L m (G) is s-vertex pancyclic. We show that for a given integer s ≥ 0,
$vp_s(G)\le \left\{\begin{array}{l@{\quad}l}\qquad\quad\quad\,\,\,\,\,\,\, l(G)+s+1: \quad {\rm if} \,\, 0 \le s \le 4 \\ l(G)+\lceil {\rm log}_2(s-2) \rceil+4: \quad {\rm if} \,\, s \ge 5 \end{array}\right.$
And we improve the bound for essentially 3-edge-connected graphs. The lower bound and whether the upper bound is sharp are also discussed.
  相似文献   

14.
Let γ(G) and i(G) be the domination number and the independent domination number of G, respectively. Rad and Volkmann posted a conjecture that i(G)/γ(G) ≤ Δ(G)/2 for any graph G, where Δ(G) is its maximum degree (see N. J. Rad, L. Volkmann (2013)). In this work, we verify the conjecture for bipartite graphs. Several graph classes attaining the extremal bound and graphs containing odd cycles with the ratio larger than Δ(G)/2 are provided as well.  相似文献   

15.
Let α be an automorphism of a finite group G. For a positive integer n, let E G,n (α) be the subgroup generated by all commutators [...[[x,α],α],…,α] in the semidirect product G 〈α〉 over xG, where α is repeated n times. By Baer’s theorem, if E G,n (α)=1, then the commutator subgroup [G,α] is nilpotent. We generalize this theorem in terms of certain length parameters of E G,n (α). For soluble G we prove that if, for some n, the Fitting height of E G,n (α) is equal to k, then the Fitting height of [G,α] is at most k + 1. For nonsoluble G the results are in terms of the nonsoluble length and generalized Fitting height. The generalized Fitting height h*(H) of a finite group H is the least number h such that F h* (H) = H, where F 0* (H) = 1, and F i+1* (H) is the inverse image of the generalized Fitting subgroup F*(H/F i *(H)). Let m be the number of prime factors of the order |α| counting multiplicities. It is proved that if, for some n, the generalized Fitting height E G,n (α) of is equal to k, then the generalized Fitting height of [G,α] is bounded in terms of k and m. The nonsoluble length λ(H) of a finite group H is defined as the minimum number of nonsoluble factors in a normal series each of whose factors either is soluble or is a direct product of nonabelian simple groups. It is proved that if λE G,n (α)= k, then the nonsoluble length of [G,α] is bounded in terms of k and m. We also state conjectures of stronger results independent of m and show that these conjectures reduce to a certain question about automorphisms of direct products of finite simple groups.  相似文献   

16.
A connected graph G is said to be a factor-critical graph if G ?v has a perfect matching for every vertex v of G. In this paper, the 2-connected factor-critical graph G which has exactly |E(G)| + 1 maximum matchings is characterized.  相似文献   

17.
Let G be a finite group and let Γ(G) be the prime graph of G. Assume p prime. We determine the finite groups G such that Γ(G) = Γ(PSL(2, p 2)) and prove that if p ≠ 2, 3, 7 is a prime then k(Γ(PSL(2, p 2))) = 2. We infer that if G is a finite group satisfying |G| = |PSL(2, p 2)| and Γ(G) = Γ(PSL(2, p 2)) then G ? PSL(2, p 2). This enables us to give new proofs for some theorems; e.g., a conjecture of W. Shi and J. Bi. Some applications are also considered of this result to the problem of recognition of finite groups by element orders.  相似文献   

18.
A graph G = (V,E) is an integral sum graph if there exists a labeling S(G) ? Z such that V = S(G) and every two distinct vertices u, υV are adjacent if and only if u + υV. A connected graph G = (V,E) is called unicyclic if |V| = |E|. In this paper two infinite series are constructed of unicyclic graphs that are not integral sum graphs.  相似文献   

19.
A subset F ? V (G) is called an R k -vertex-cut of a graph G if G ? F is disconnected and each vertex of G ? F has at least k neighbors in G ? F. The R k -vertex-connectivity of G, denoted by κ k (G), is the cardinality of a minimum R k -vertex-cut of G. Let B n be the bubble sort graph of dimension n. It is known that κ k (B n ) = 2 k (n ? k ? 1) for n ≥ 2k and k = 1, 2. In this paper, we prove it for k = 3 and conjecture that it is true for all kN. We also prove that the connectivity cannot be more than conjectured.  相似文献   

20.
The edge clique cover sum number (resp. edge clique partition sum number) of a graph G, denoted by scc(G) (resp. scp(G)), is defined as the smallest integer k for which there exists a collection of complete subgraphs of G, covering (resp. partitioning) all edges of G such that the sum of sizes of the cliques is at most k. By definition, scc(G) \({\leqq}\) scp(G). Also, it is known that for every graph G on n vertices, scp(G) \({\leqq n^{2}/2}\). In this paper, among some other results, we improve this bound for scc(G). In particular, we prove that if G is a graph on n vertices with no isolated vertex and the maximum degree of the complement of G is d ? 1, for some integer d, then scc(G) \({\leqq cnd\left\lceil\log \left(({n-1})/(d-1)\right)\right\rceil}\), where c is a constant. Moreover, we conjecture that this bound is best possible up to a constant factor. Using a well-known result by Bollobás on set systems, we prove that this conjecture is true at least for d = 2. Finally, we give an interpretation of this conjecture as an interesting set system problem which can be viewed as a multipartite generalization of Bollobás’ two families theorem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号