首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The main purpose of this paper is to establish the Hormander-Mihlin type theorem for Fourier multipliers with optimal smoothness on k-parameter Hardy spaces for k≥ 3 using the multiparameter Littlewood-Paley theory. For the sake of convenience and simplicity, we only consider the case k = 3, and the method works for all the cases k≥ 3:■where x =(x_1,x_2,x_3)∈R~(n_1)×R~(n_2)×R~(n_3) and ξ =(ξ_1,ξ_2,ξ_3)∈R~(n_1)×R~(n_2)×R~(n_3). One of our main results is the following:Assume that m(ξ) is a function on R~(n_1+n_2+n_3) satisfying ■ with s_i n_i(1/p-1/2) for 1≤i≤3. Then T_m is bounded from H~p(R~(n_1)×R~(n_2)×R~(n_3) to H~p(R~(n_1)×R~(n_2)×R~(n_3)for all 0 p≤1 and ■ Moreover, the smoothness assumption on s_i for 1≤i≤3 is optimal. Here we have used the notations m_(j,k,l)(ξ)=m(2~jξ_1,2~kξ_2,2~lξ_3)Ψ(ξ_1)Ψ(ξ_2)Ψ(ξ_3) and Ψ(ξ_i) is a suitable cut-off function on R~(n_i) for1≤i≤3, and W~(s_1,s_2,s_3) is a three-parameter Sobolev space on R~(n_1)×R~(n_2)× R~(n_3).Because the Fefferman criterion breaks down in three parameters or more, we consider the L~p boundedness of the Littlewood-Paley square function of T_mf to establish its boundedness on the multi-parameter Hardy spaces.  相似文献   

2.
Let (S,ω) be a weighted abelian semigroup, let M ω (S) be the semigroup of ω-bounded multipliers of S, and let \(\mathcal {A}\) be a strictly convex commutative Banach algebra with identity. It is shown that T is an onto isometric multiplier of \(\ell ^{1}(S,\omega , \mathcal {A})\) if and only if there exists an invertible σM ω (S), a unitary point \(a \in \mathcal {A}\), and a k>0 such that \(T(f)= ka{\sum }_{x \in S} f(x)\delta _{\sigma (x)}\) for each \(f={\sum }_{x \in S}f(x)\delta _{x} \in \ell ^{1}(S,\omega ,\mathcal {A})\). It is also shown that an isomorphism from \(\ell ^{1}(S_{1},\omega _{1},\mathcal {A})\) onto \(\ell ^{1}(S_{2},\omega _{2}, \mathcal {B})\) induces an isomorphism from \(M(\ell ^{1}(S_{1},\omega _{1},\mathcal {A}))\), the set of all multipliers of \(\ell ^{1}(S_{1},\omega _{1},\mathcal {A})\), onto \(M(\ell ^{1}(S_{2},\omega _{2},\mathcal {B}))\).  相似文献   

3.
By forcing with Pmax over strong models of determinacy, we obtain models where different square principles at ω 2 and ω 3 fail. In particular, we obtain a model of \({2^{{\aleph _0}}} = {2^{{\aleph _1}}} = {\aleph _2} + {\neg }\square \left( {{\omega _2}} \right) + {\neg }\square \left( {{\omega _3}} \right)\).  相似文献   

4.
Let m ≥ 2, the numbers p 1,…, p m ∈ (1, +∞] satisfy the inequality \(\frac{1}{{{p_1}}} + ...\frac{1}{{{p_m}}} < 1\), and γ1 ∈ L p1(?1), …, γ m \({L^{{p_m}}}\)(?1). We prove that, if the set of “resonance” points of each of these functions is nonempty and the “nonresonance” condition holds (both concepts have been introduced by the author for functions of spaces L p (?1), p ∈ (1, +∞]), we have the inequality \(\mathop {\sup }\limits_{a,b \in {R^1}} \left| {\int\limits_a^b {\prod\limits_{k = 1}^m {\left[ {{\gamma _k}\left( \tau \right) + \Delta {\gamma _k}\left( \tau \right)} \right]} d\tau } } \right| \leqslant C{\prod\limits_{k = 1}^m {\left\| {{\gamma _k} + \Delta {\gamma _k}} \right\|} _{L_{{a_k}}^{{p_k}}}}\left( {{\mathbb{R}^1}} \right)\), where the constant C > 0 is independent of functions \(\Delta {\gamma _k} \in L_{{a_k}}^{{p_k}}\left( {{\mathbb{R}^1}} \right)\) and \(L_{{a_k}}^{{p_k}}\left( {{\mathbb{R}^1}} \right) \subset {L^{{p_k}}}\left( {{\mathbb{R}^1}} \right)\), 1 ≤ km are some specially constructed normed spaces. In addition, we give a boundedness condition for the integral of the product of functions over a subset of ?1.  相似文献   

5.
In this paper, characterizations of the embeddings between weighted Copson function spaces \(Co{p_{{p_1},{q_1}}}\left( {{u_1},{v_1}} \right)\) and weighted Cesàro function spaces \(Ce{s_{{p_2},{q_2}}}\left( {{u_2},{v_2}} \right)\) are given. In particular, two-sided estimates of the optimal constant c in the inequality
$${\left( {\int_0^\infty {{{\left( {\int_0^t {f{{\left( \tau \right)}^{{p_2}}}{v_2}\left( \tau \right)d\tau } } \right)}^{{q_2}/{p_2}}}{u_2}\left( t \right)dt} } \right)^{1/{q_2}}} \leqslant c{\left( {\int_0^\infty {{{\left( {\int_t^\infty {f{{\left( \tau \right)}^{{p_1}}}{v_1}\left( \tau \right)d\tau } } \right)}^{{q_1}/{p_1}}}{u_1}\left( t \right)dt} } \right)^{1/{q_1}}},$$
where p1, p2, q1, q2 ∈ (0,∞), p2q2 and u1, u2, v1, v2 are weights on (0,∞), are obtained. The most innovative part consists of the fact that possibly different parameters p1 and p2 and possibly different inner weights v1 and v2 are allowed. The proof is based on the combination of duality techniques with estimates of optimal constants of the embeddings between weighted Cesàro and Copson spaces and weighted Lebesgue spaces, which reduce the problem to the solutions of iterated Hardy-type inequalities.
  相似文献   

6.
For the linear positive Korovkin operator \(f\left( x \right) \to {t_n}\left( {f;x} \right) = \frac{1}{\pi }\int_{ - \pi }^\pi {f\left( {x + t} \right)E\left( t \right)dt} \), where E(x) is the Egervary–Szász polynomial and the corresponding interpolation mean \({t_{n,N}}\left( {f;x} \right) = \frac{1}{N}\sum\limits_{k = - N}^{N - 1} {{E_n}\left( {x - \frac{{\pi k}}{N}} \right)f\left( {\frac{{\pi k}}{N}} \right)} \), the Jackson-type inequalities \(\left\| {{t_{n,N}}\left( {f;x} \right) - f\left( x \right)} \right\| \leqslant \left( {1 + \pi } \right){\omega _f}\left( {\frac{1}{n}} \right),\left\| {{t_{n,N}}\left( {f;x} \right) - f\left( x \right)} \right\| \leqslant 2{\omega _f}\left( {\frac{\pi }{{n + 1}}} \right)\), where ωf (x) denotes the modulus of continuity, are proved for N > n/2. For ωf (x) ≤ Mx, the inequality \(\left\| {{t_{n,N}}\left( {f;x} \right) - f\left( x \right)} \right\| \leqslant \frac{{\pi M}}{{n + 1}}\). is established. As a consequence, an elementary derivation of an asymptotically sharp estimate of the Kolmogorov width of a compact set of functions satisfying the Lipschitz condition is obtained.  相似文献   

7.
We prove that for every n ∈ ? there exists a metric space (X, d X), an n-point subset S ? X, a Banach space (Z, \({\left\| \right\|_Z}\)) and a 1-Lipschitz function f: SZ such that the Lipschitz constant of every function F: XZ that extends f is at least a constant multiple of \(\sqrt {\log n} \). This improves a bound of Johnson and Lindenstrauss [JL84]. We also obtain the following quantitative counterpart to a classical extension theorem of Minty [Min70]. For every α ∈ (1/2, 1] and n ∈ ? there exists a metric space (X, d X), an n-point subset S ? X and a function f: S → ?2 that is α-Hölder with constant 1, yet the α-Hölder constant of any F: X → ?2 that extends f satisfies \({\left\| F \right\|_{Lip\left( \alpha \right)}} > {\left( {\log n} \right)^{\frac{{2\alpha - 1}}{{4\alpha }}}} + {\left( {\frac{{\log n}}{{\log \log n}}} \right)^{{\alpha ^2} - \frac{1}{2}}}\). We formulate a conjecture whose positive solution would strengthen Ball’s nonlinear Maurey extension theorem [Bal92], serving as a far-reaching nonlinear version of a theorem of König, Retherford and Tomczak-Jaegermann [KRTJ80]. We explain how this conjecture would imply as special cases answers to longstanding open questions of Johnson and Lindenstrauss [JL84] and Kalton [Kal04].  相似文献   

8.
Let \(\mathcal S\) be an abelian group of automorphisms of a probability space \((X, {\mathcal A}, \mu )\) with a finite system of generators \((A_1, \ldots , A_d).\) Let \(A^{{\underline{\ell }}}\) denote \(A_1^{\ell _1} \ldots A_d^{\ell _d}\), for \({{\underline{\ell }}}= (\ell _1, \ldots , \ell _d).\) If \((Z_k)\) is a random walk on \({\mathbb {Z}}^d\), one can study the asymptotic distribution of the sums \(\sum _{k=0}^{n-1} \, f \circ A^{\,{Z_k(\omega )}}\) and \(\sum _{{\underline{\ell }}\in {\mathbb {Z}}^d} {\mathbb {P}}(Z_n= {\underline{\ell }}) \, A^{\underline{\ell }}f\), for a function f on X. In particular, given a random walk on commuting matrices in \(SL(\rho , {\mathbb {Z}})\) or in \({\mathcal M}^*(\rho , {\mathbb {Z}})\) acting on the torus \({\mathbb {T}}^\rho \), \(\rho \ge 1\), what is the asymptotic distribution of the associated ergodic sums along the random walk for a smooth function on \({\mathbb {T}}^\rho \) after normalization? In this paper, we prove a central limit theorem when X is a compact abelian connected group G endowed with its Haar measure (e.g., a torus or a connected extension of a torus), \(\mathcal S\) a totally ergodic d-dimensional group of commuting algebraic automorphisms of G and f a regular function on G. The proof is based on the cumulant method and on preliminary results on random walks.  相似文献   

9.
Consider a sequence \(\{X_{n}\}_{n=1}^{\infty }\) of i.i.d. uniform random variables taking values in the alphabet set {1, 2,…, d}. A k-superpattern is a realization of \(\{X_{n}\}_{n=1}^{t}\) that contains, as an embedded subsequence, each of the non-order-isomorphic subpatterns of length k. We focus on the (non-trivial) case of d = k = 3 and study the waiting time distribution of \(\tau =\inf \{t\ge 1:\{X_{n}\}_{n=1}^{t}\ \text {is\ a\ superpattern}\}\). Our restricted set-up leads to proofs that are very combinatorial in nature, since we are essentially conducting a string analysis.  相似文献   

10.
We obtain the operator norms of the n-dimensional fractional Hardy operator H α (0 < α < n) from weighted Lebesgue spaces \(L_{\left| x \right|^\rho }^p (\mathbb{R}^n )\) to weighted weak Lebesgue spaces \(L_{\left| x \right|^\beta }^{q,\infty } (\mathbb{R}^n )\).  相似文献   

11.
Let X be a locally compact Abelian group, \(\alpha _{j}, \beta _j\) be topological automorphisms of X. Let \(\xi _1, \xi _2\) be independent random variables with values in X and distributions \(\mu _j\) with non-vanishing characteristic functions. It is known that if X contains no subgroup topologically isomorphic to the circle group \(\mathbb {T}\), then the independence of the linear forms \(L_1=\alpha _1\xi _1+\alpha _2\xi _2\) and \(L_2=\beta _1\xi _1+\beta _2\xi _2\) implies that \(\mu _j\) are Gaussian distributions. We prove that if X contains no subgroup topologically isomorphic to \(\mathbb {T}^2\), then the independence of \(L_1\) and \(L_2\) implies that \(\mu _j\) are either Gaussian distributions or convolutions of Gaussian distributions and signed measures supported in a subgroup of X generated by an element of order 2. The proof is based on solving the Skitovich–Darmois functional equation on some locally compact Abelian groups.  相似文献   

12.
In this paper, we investigate compactly supported symmetric orthonormal dyadic complex wavelets such that the symmetric orthonormal refinable functions have high linear-phase moments and the antisymmetric wavelets have high vanishing moments. Such wavelets naturally lead to real-valued symmetric tight wavelet frames with some desirable moment properties, and are related to coiflets which are real-valued and are of interest in numerical algorithms. For any positive integer m, employing only the Riesz lemma without solving any nonlinear equations, we obtain a 2π-periodic trigonometric polynomial \(\hat a\) with complex coefficients such that
  1. (i)
    \(\hat a\) is an orthogonal mask: \(|\hat a(\xi)|^2+|\hat a(\xi+\pi)|^2=1\).
     
  2. (ii)
    \(\hat a\) has m?+?1???odd m sum rules: \(\hat a(\xi+\pi)=O(|\xi|^{m+1-odd_m})\) as ξ→0, where \(odd_m:=\frac{1-(-1)^m}{2}\).
     
  3. (iii)
    \(\hat a\) has m?+?odd m linear-phase moments: \(\hat a(\xi)=e^{{{\mathrm{i}}} c\xi}+O(|\xi|^{m+odd_m})\) as ξ→0 with phase c?=???1/2.
     
  4. (iv)
    \(\hat a\) has symmetry and coefficient support [2???2m,2m???1]: \(\hat a(\xi)=\sum_{k=2-2m}^{2m-1} h_k e^{-{{\mathrm{i}}} k\xi}\) with h1???k ?=?h k .
     
  5. (v)
    \(\hat a(\xi)\ne 0\) for all ξ?∈?(???π,π).
     
Define \(\hat \phi(\xi):=\prod_{j=1}^\infty \hat a(2^{-j}\xi)\) and \(\hat \psi(2\xi)=e^{-{{\mathrm{i}}} \xi} {\overline{\hat a(\xi+\pi)}}\hat \phi(\xi)\). Then ψ is a compactly supported antisymmetric orthonormal wavelet with m?+?1???odd m vanishing moments, and ? is a compactly supported symmetric orthonormal refinable function with the special linear-phase moments: \(\int_{{{\mathbb R}}} \phi(x)dx=1\) and \(\int_{{{\mathbb R}}} (x-1/2)^j \phi(x) dx=0\) for all j?=?1,...,m?+?odd m ???1. Both functions ? and ψ are supported on [2???2m,2m???1].The mask of a coiflet has real coefficients and satisfies (i), (ii), and (iii), often with a general phase c and the additional condition that the order of the linear-phase moments is equal (or close) to the order of the sum rules. On the one hand, as Daubechies showed in [3, 5] that except the Haar wavelet, any compactly supported dyadic orthonormal real-valued wavelets including coiflets cannot have symmetry. On the other hand, solving nonlinear equations, [4, 12] constructed many interesting real-valued dyadic coiflets without symmetry. But it remains open whether there is a family of real-valued orthonormal wavelets such as coiflets whose masks can have arbitrarily high linear-phase moments. This partially motivates this paper to study the complex wavelet case with symmetry property. Though symmetry can be achieved by considering complex wavelets, the symmetric Daubechies complex orthogonal masks in [11] generally have no more than 2 linear-phase moments. In this paper, we shall study and construct orthonormal dyadic complex wavelets and masks with symmetry, linear-phase moments, and sum rules. Examples and two general construction procedures for symmetric orthogonal masks with high linear-phase moments and sum rules are given to illustrate the results in this paper. We also answer an open question on construction of symmetric Daubechies complex orthogonal masks in the literature.  相似文献   

13.
We provide irreducibility criteria for compositions of multivariate polynomials over a field K, of the form \({f(X_{1},\ldots ,X_{r-1},g(X_{1},\ldots ,X_{r}))}\), with \({f,g\in K[X_{1},\ldots ,X_{r}]}\), for the case that \({f}\) as a polynomial in Xr is irreducible over \({K(X_{1},\ldots ,X_{r-1})}\) and has leading coefficient divisible by a power of an irreducible polynomial \({p(X_{1},\ldots ,X_{r-1})}\) of sufficiently large degree with respect to \({X_{r-1}}\).  相似文献   

14.
A generalization of the notion of expansion over the signum system to the case of a sigma-finite space is considered in the paper. Let {E k } k=1 be an exhaustion of X, then under the condition \(\sum\limits_{k = 1}^\infty {\tfrac{1}{{\mu E_k }}} = \infty \) the expansion converges to the expanded function in the metric of L 2, and under the conditions \(\sum\limits_{k = 1}^\infty {\tfrac{1}{{\mu E_k }}} = \infty \) and \(\mathop {\lim }\limits_{k \to \infty } \tfrac{{\mu E_{k - 1} }}{{\mu E_k }} = 1\) the convergence holds almost everywhere for functions from L (X).  相似文献   

15.
We give a simple example of a countable metric graph M such that M Lipschitz embeds with distortion strictly less than 2 into a Banach space X only if X contains an isomorphic copy of l 1. Further we show that, for each ordinal α < ω 1, the space C([0, ω α ]) does not Lipschitz embed into C(K) with distortion strictly less than 2 unless K (α) ≠ 0. Also \(C\left( {\left[ {0,{\omega ^{{\omega ^\alpha }}}} \right]} \right)\) does not Lipschitz embed into a Banach space X with distortion strictly less than 2 unless Sz(X) ≥ ω α+1.  相似文献   

16.
We develop conditions on a Sobolev function \(\psi \in W^{m,p}({\mathbb{R}}^d)\) such that if \(\widehat{\psi}(0) = 1\) and ψ satisfies the Strang–Fix conditions to order m ? 1, then a scale averaged approximation formula holds for all \(f \in W^{m,p}({\mathbb{R}}^d)\) :
$ f(x) = \lim_{J \to \infty} \frac{1}{J} \sum_{j=1}^{J} \sum_{k \in {{\mathbb{Z}}}^d} c_{j,k}\psi(a_j x - k) \quad {\rm in} W^{m, p}({{\mathbb{R}}}^d).$
The dilations { a j } are lacunary, for example a j =  2 j , and the coefficients c j,k are explicit local averages of f, or even pointwise sampled values, when f has some smoothness. For convergence just in \({W^{m - 1,p}({\mathbb{R}}^d)}\) the scale averaging is unnecessary and one has the simpler formula \(f(x) = \lim_{j \to \infty} \sum_{k \in {\mathbb{Z}}^d} c_{j,k}\psi(a_j x - k)\) . The Strang–Fix rates of approximation are recovered. As a corollary of the scale averaged formula, we deduce new density or “spanning” criteria for the small scale affine system \(\{\psi(a_j x - k) : j > 0, k \in {\mathbb{Z}}^d \}\) in \(W^{m,p}({\mathbb{R}}^d)\) . We also span Sobolev space by derivatives and differences of affine systems, and we raise an open problem: does the Gaussian affine system span Sobolev space?
  相似文献   

17.
We study polychromatic Ramsey theory with a focus on colourings of [ω 2]2. We show that in the absence of GCH there is a wide range of possibilities. In particular each of the following is consistent relative to the consistency of ZFC: (1) 2 ω = ω 2 and \(\omega _2 \to ^{poly} (\alpha )_{\aleph _0 - bdd}^2 \) for every α <ω 2; (2) 2 ω = ω 2 and \(\omega _2 \nrightarrow ^{poly} (\omega _1 )_{2 - bdd}^2 \).  相似文献   

18.
Let E = E(a, b) be some Banach space of measurable functions on (a, b), I be the identity operator, and let \(\hat K\) be a Fredholm-type regular integral operator acting on E and \({\hat K_ \pm }\) be its triangular parts. We consider the representation \(I - \hat K = \left( {I - {{\hat K}_ - }} \right)\left( {I - \hat U} \right)\left( {I - {{\hat K}_ + }} \right)\), for some known classes of integral operators. In particular,we show that under certain conditions the operator \(\hat U\) is positive and its spectral radius satisfies the condition \(r\left( {\hat U} \right) < 1\). Also, we give some possible applications of the representation.  相似文献   

19.
The Cesàro operator C, when acting in the classical growth Banach spaces \({A^{-\gamma}}\) and \({A_0^{-\gamma}}\), for \({\gamma} > 0\), of analytic functions on \({\mathbb{D}}\), is investigated. Based on a detailed knowledge of their spectra (due to A. Aleman and A.-M. Persson) we are able to determine the norms of these operators precisely. It is then possible to characterize the mean ergodic and related properties of C acting in these spaces. In addition, we determine the largest Banach space of analytic functions on \({\mathbb{D}}\) which C maps into \({A^{-\gamma}}\) (resp. into \({A_0^{-\gamma}}\)); this optimal domain space always contains \({A^{-\gamma}}\) (resp. \({A_0^{-\gamma}}\)) as a proper subspace.  相似文献   

20.
For any rational integer q, |q|?>?1, the linear independence over \( \mathbb{Q} \) of the numbers 1, ζ q (1), and ζ ?q (1) is proved; here \( {\zeta_q}(1) = \sum\limits_{n = 1}^\infty {\frac{1}{{{q^n} - 1}}} \) is the so-called q-harmonic series or the q-zeta-value at the point 1. Besides this, a measure of linear independence of these numbers is established.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号