首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For the number n s , β; X) of points (x 1 , x 2) in the two-dimensional Fibonacci quasilattices \( \mathcal{F}_m^2 \) of level m?=?0, 1, 2,… lying on the hyperbola x 1 2 ? ??αx 2 2 ?=?β and such that 0?≤?x 1? ≤?X, x 2? ?0, the asymptotic formula
$ {n_s}\left( {\alpha, \beta; X} \right)\sim {c_s}\left( {\alpha, \beta } \right)\ln X\,\,\,\,{\text{as}}\,\,\,\,X \to \infty $
is established, and the coefficient c s (α, β) is calculated exactly. Using this, we obtain the following result. Let F m be the Fibonacci numbers, A i \( \mathbb{N} \), i?=?1, 2, and let \( \overleftarrow {{A_i}} \) be the shift of A i in the Fibonacci numeral system. Then the number n s (X) of all solutions (A 1 , A 2) of the Diophantine system
$ \left\{ {\begin{array}{*{20}{c}} {A_1^2 + \overleftarrow {A_1^2} - 2{A_2}{{\overleftarrow A }_2} + \overleftarrow {A_2^2} = {F_{2s}},} \\ {\overleftarrow {A_1^2} - 2{A_1}{{\overleftarrow A }_1} + A_2^2 - 2{A_2}{{\overleftarrow A }_2} + 2\overleftarrow {A_2^2} = {F_{2s - 1}},} \\ \end{array} } \right. $
0?≤?A 1? ≤?X, A 2? ?0, satisfies the asymptotic formula
$ {n_s}(X)\sim \frac{{{c_s}}}{{{\text{ar}}\cosh \left( {{{1} \left/ {\tau } \right.}} \right)}}\ln X\,\,\,\,{\text{as}}\,\,\,\,X \to \infty . $
Here τ?=?(?1?+?5)/2 is the golden ratio, and c s ?=?1/2 or 1 for s?=?0 or s?≥?1, respectively.
  相似文献   

2.
A family of sets is union-free if there are no three distinct sets in the family such that the union of two of the sets is equal to the third set. Kleitman proved that every union-free family has size at most (1+o(1))( n/2 n ). Later, Burosch–Demetrovics–Katona–Kleitman–Sapozhenko asked for the number α(n) of such families, and they proved that \({2^{\left( {\begin{array}{*{20}{c}} n \\ {n/2} \end{array}} \right)}} \leqslant \alpha \left( n \right) \leqslant {2^{2\sqrt 2 \left( {\begin{array}{*{20}{c}} n \\ {n/2} \end{array}} \right)\left( {1 + o\left( 1 \right)} \right)}}\) They conjectured that the constant \(2\sqrt 2 \) can be removed in the exponent of the right-hand side. We prove their conjecture by formulating a new container-type theorem for rooted hypergraphs.  相似文献   

3.
LetH r be anr-uniform hypergraph. Letg=g(n;H r ) be the minimal integer so that anyr-uniform hypergraph onn vertices and more thang edges contains a subgraph isomorphic toH r . Lete =f(n;H r ,εn) denote the minimal integer such that everyr-uniform hypergraph onn vertices with more thane edges and with no independent set ofεn vertices contains a subgraph isomorphic toH r . We show that ifr>2 andH r is e.g. a complete graph then $$\mathop {\lim }\limits_{\varepsilon \to 0} \mathop {\lim }\limits_{n \to \infty } \left( {\begin{array}{*{20}c} n \\ r \\ \end{array} } \right)^{ - 1} f(n;H^r ,\varepsilon n) = \mathop {\lim }\limits_{n \to \infty } \left( {\begin{array}{*{20}c} n \\ r \\ \end{array} } \right)^{ - 1} g(n;H^r )$$ while for someH r with \(\mathop {\lim }\limits_{n \to \infty } \left( {\begin{array}{*{20}c} n \\ r \\ \end{array} } \right)^{ - 1} g(n;H^r ) \ne 0\) $$\mathop {\lim }\limits_{\varepsilon \to 0} \mathop {\lim }\limits_{n \to \infty } \left( {\begin{array}{*{20}c} n \\ r \\ \end{array} } \right)^{ - 1} f(n;H^r ,\varepsilon n) = 0$$ . This is in strong contrast with the situation in caser=2. Some other theorems and many unsolved problems are stated.  相似文献   

4.
Divided differences forf (x, y) for completely irregular spacing of points (x i ,y i ) are developed here by a natural generalization of Newton's scheme. Existing bivariate schemes either iterate the one-dimensional scheme, thus constraining (x i ,y i ) to be at corners of rectangles, or give polynomials Σa jk x j y k having more coefficients than interpolation conditions. Here the generalizedn th divided difference is defined by (1)\(\left[ {01... n} \right] = \sum\limits_{i = 0}^n {A_i f\left( {x_i , y_i } \right)} \) where (2)\(\sum\limits_{i = 0}^n {A_i x_i^j , y_i^k = 0} \), and 1 for the last or (n+1)th equation, for every (j, k) wherej+k=0, 1, 2,... in the usual ascending order. The gen. div. diff. [01...n] is symmetric in (x i ,y i ), unchanged under translation, 0 forf (x, y) an, ascending binary polynomial as far asn terms, degree-lowering with respect to (X, Y) whenf(x, y) is any polynomialP(X+x, Y+y), and satisfies the 3-term recurrence relation (3) [01...n]=λ{[1...n]?[0...n?1]}, where (4) λ= |1...n|·|01...n?1|/|01...n|·|1...n?1|, the |...i...| denoting determinants inx i j y i k . The generalization of Newton's div. diff. formula is (5)
$$\begin{gathered} f\left( {x, y} \right) = f\left( {x_0 , y_0 } \right) - \frac{{\left| {\alpha 0} \right|}}{{\left| 0 \right|}}\left[ {01} \right] + \frac{{\left| {\alpha 01} \right|}}{{\left| {01} \right|}}\left[ {012} \right] - \frac{{\left| {\alpha 012} \right|}}{{\left| {012} \right|}}\left[ {0123} \right] + \cdots + \hfill \\ + \left( { - 1} \right)^n \frac{{\left| {\alpha 01 \ldots n - 1} \right|}}{{\left| {01 \ldots n - 1} \right|}}\left[ {01 \ldots n} \right] + \left( { - 1} \right)^{n + 1} \frac{{\left| {\alpha 01 \ldots n} \right|}}{{\left| {01 \ldots n} \right|}}\left[ {01 \ldots n} \right], \hfill \\ \end{gathered} $$  相似文献   

5.
Let {p n (t)} n=0 t8 be a system of algebraic polynomials orthonormal on the segment [?1, 1] with a weight p(t); let {x n,ν (p) } ν=1 n be zeros of a polynomial p n (t) (x x,ν (p) = cosθ n,ν (p) ; 0 < θ n,1 (p) < θ n,2 (p) < ... < θ n,n (p) < π). It is known that, for a wide class of weights p(t) containing the Jacobi weight, the quantities θ n,1 (p) and 1 ? x n,1 (p) coincide in order with n ?1 and n ?2, respectively. In the present paper, we prove that, if the weight p(t) has the form p(t) = 4(1 ? t 2)?1{ln2[(1 + t)/(1 ? t)] + π 2}?1, then the following asymptotic formulas are valid as n → ∞:
$$\theta _{n,1}^{(p)} = \frac{{\sqrt 2 }}{{n\sqrt {\ln (n + 1)} }}\left[ {1 + {\rm O}\left( {\frac{1}{{\ln (n + 1)}}} \right)} \right],x_{n,1}^{(p)} = 1 - \left( {\frac{1}{{n^2 \ln (n + 1)}}} \right) + O\left( {\frac{1}{{n^2 \ln ^2 (n + 1)}}} \right).$$
  相似文献   

6.
For a periodic function f with a given decrease of the moduli of its Fourier coefficients, we analyze the solvability of the equation \(w(T_\alpha x) - w(x) = f(x) - \smallint _{\mathbb{T}^d } f(t) dt\) and the asymptotic behavior of the Birkhoff sums Σ s=0 n?1 f(T α s x) for almost every α. The results obtained are applied to the study of ergodic properties of a cylindrical cascade and of a special flow on the torus.  相似文献   

7.
The paper considers cubature formulas for calculating integrals of functions f(X), X = (x 1, …, x n ) which are defined on the n-dimensional unit hypercube K n = [0, 1] n and have integrable mixed derivatives of the kind \(\partial _{\begin{array}{*{20}c} {\alpha _1 \alpha _n } \\ {x_1 , \ldots , x_n } \\ \end{array} } f(X)\), 0 ≤ α j ≤ 2. We estimate the errors R[f] = \(\smallint _{K^n } \) f(X)dX ? Σ k = 1 N c k f(X(k)) of cubature formulas (c k > 0) as functions of the weights c k of nodes X(k) and properties of integrable functions. The error is estimated in terms of the integrals of the derivatives of f over r-dimensional faces (rn) of the hypercube K n : |R(f)| ≤ \(\sum _{\alpha _j } \) G j )\(\int_{K^r } {\left| {\partial _{\begin{array}{*{20}c} {\alpha _1 \alpha _n } \\ {x_1 , \ldots , x_n } \\ \end{array} } f(X)} \right|} \) dX r , where coefficients G j ) are criteria which depend only on parameters c k and X(k). We present an algorithm to calculate these criteria in the two- and n-dimensional cases. Examples are given. A particular case of the criteria is the discrepancy, and the algorithm proposed is a generalization of those used to compute the discrepancy. The results obtained can be used for optimization of cubature formulas as functions of c k and X(k).  相似文献   

8.
Exact distribution of MLE of covariance matrix in a GMANOVA-MANOVA model   总被引:2,自引:0,他引:2  
For a GMANOVA-MANOVA model with normal error: Y = XB1Z1 T B2Z2 T E, E- Nq×n(0, In (?) ∑), the present paper is devoted to the study of distribution of MLE, ∑, of covariance matrix ∑. The main results obtained are stated as follows: (1) When rk(Z) -rk(Z2) ≥ q-rk(X), the exact distribution of ∑ is derived, where z = (Z1,Z2), rk(A) denotes the rank of matrix A. (2) The exact distribution of |∑| is gained. (3) It is proved that ntr{[S-1 - ∑-1XM(MTXT∑-1XM)-1MTXT∑-1]∑}has X2(q_rk(x))(n-rk(z2)) distribution, where M is the matrix whose columns are the standardized orthogonal eigenvectors corresponding to the nonzero eigenvalues of XT∑-1X.  相似文献   

9.
10.
Let n, k, α be integers, n, α>0, p be a prime and q=p α. Consider the complete q-uniform family
$\mathcal{F}\left( {k,q} \right) = \left\{ {K \subseteq \left[ n \right]:\left| K \right| \equiv k(mod q)} \right\}$
We study certain inclusion matrices attached to F(k,q) over the field\(\mathbb{F}_p \). We show that if l≤q?1 and 2ln then
$rank_{\mathbb{F}_p } I(\mathcal{F}(k,q),\left( {\begin{array}{*{20}c} {\left[ n \right]} \\ { \leqslant \ell } \\ \end{array} } \right)) \leqslant \left( {\begin{array}{*{20}c} n \\ \ell \\ \end{array} } \right)$
This extends a theorem of Frankl [7] obtained for the case α=1. In the proof we use arguments involving Gröbner bases, standard monomials and reduction. As an application, we solve a problem of Babai and Frankl related to the size of some L-intersecting families modulo q.  相似文献   

11.
Let {φ n (α,β) (z)} n=0 be a system of Jacobi polynomials orthonormal on the circle |z| = 1 with respect to the weight (1 ? cos τ)α+1/2(1 + cos τ)β+1/2 (α, β > ?1), and let \(\psi _n^{\left( {\alpha ,\beta } \right)*} \left( z \right): = z^n \overline {\psi _n^{\left( {\alpha ,\beta } \right)} \left( {{1 \mathord{\left/ {\vphantom {1 {\bar z}}} \right. \kern-\nulldelimiterspace} {\bar z}}} \right)}\)). We establish relations between the polynomial φ n (α,?1/2) (z) and the nth (C, α ? 1/2)-mean of the Maclaurin series for the function (1 ? z)?α?3/2 and also between the polynomial φ n (α,?1/2)* (z) and the nth (C, α + 1/2)-mean of the Maclaurin series for the function (1 ? z)?α?1/2. We use these relations to derive an asymptotic formula for φ n (α,?1/2) (z); the formula is uniform inside the disk |z| < 1. It follows that φ n (α,?1/2) (z) ≠ 0 in the disk |z| ≤ ρ for fixed φ ∈ (0, 1) and α > ?1 if n is sufficiently large.  相似文献   

12.
In this paper, we construct a natural embedding \(\sigma :\mathbb{C}P_\mathbb{R}^{n} \to \mathbb{R}P^{n^2 + 2n} \) of the complex projective space ?P n considered as a 2n-dimensional, real-analytic manifold in the real projective space \(\mathbb{R}P^{n^2 + 2n} \). The image of the embedding σ is called the ?P n-surface. To construct the embedding, we consider two equivalent approaches. The first approach is based on properties of holomorphic bivectors in the realification of a complex vector space. This approach allows one to prove that a ?P-surface is a flat section of a Grassman manifold. In the second approach, we use the adjoint representation of the Lie group U(n + 1) and the canonical decomposition of the Lie algebra u(n). This approach allows one to state a gemetric characterization of the canonical decomposition of the Lie algebra u(n). Moreover, we study properties of the embedding constructed. We prove that this embedding determines the canonical Kähler structure on ?P ? n . In particular, the Fubini-Study metric is exactly the first fundamental form of the embedding and the complex structure on ?P ? n is completely defined by its second fundamental form; therefore, this embedding is said to be canonical. Moreover, we describe invariant and anti-invariant completely geodesic submanifolds of the complex projective space.  相似文献   

13.
Rearranged series by Haar system   总被引:2,自引:2,他引:0  
For the orthonormal Haar system {X n} the paper proves that for each 0 < ? < 1 there exist a measurable set E ? [0, 1] with measure | E | > 1 ? ? and a series of the form Σ n=1 a n X n with a i ↘ 0, such that for every function fL 1(0, 1) one can find a function \(\tilde f\)L 1(0, 1) coinciding with f on E, and a series of the form
$\sum\limits_{i = 1}^\infty {\delta _i a_i \chi _i } where \delta _i = 0 or 1$
, that would converge to \(\tilde f\) in L 1(0, 1).
  相似文献   

14.
We consider the problem of representing a solution to the Cauchy problem for an ordinary differential equation as a Fourier series in polynomials l r,k α (x) (k = 0, 1,...) that are Sobolev-orthonormal with respect to the inner product
$$\left\langle {f,g} \right\rangle = \sum\limits_{v = 0}^{r - 1} {{f^{(v)}}(0){g^{(v)}}} (0) + \int\limits_0^\infty {{f^{(r)}}(t)} {g^{(r)}}(t){t^\alpha }{e^{ - t}}dt$$
, and generated by the classical orthogonal Laguerre polynomials L k α (x) (k = 0, 1,...). The polynomials l r,k α (x) are represented as expressions containing the Laguerre polynomials L n α?r (x). An explicit form of the polynomials l r,k+r α (x) is established as an expansion in the powers x r+l , l = 0,..., k. These results can be used to study the asymptotic properties of the polynomials l r,k α (x) as k→∞and the approximation properties of the partial sums of Fourier series in these polynomials.
  相似文献   

15.
Let p ∈(0, 1], q ∈(0, ∞] and A be a general expansive matrix on Rn. We introduce the anisotropic Hardy-Lorentz space H~(p,q)_A(R~n) associated with A via the non-tangential grand maximal function and then establish its various real-variable characterizations in terms of the atomic and the molecular decompositions, the radial and the non-tangential maximal functions, and the finite atomic decompositions. All these characterizations except the ∞-atomic characterization are new even for the classical isotropic Hardy-Lorentz spaces on Rn.As applications, we first prove that Hp,q A(Rn) is an intermediate space between H~(p1,q1)_A(Rn) and H~(p2,q2)_A(R~n) with 0 p1 p p2 ∞ and q1, q, q2 ∈(0, ∞], and also between H~(p,q1)_A(Rn) and H~(p,q2)_A(R~n) with p ∈(0, ∞)and 0 q1 q q2 ∞ in the real method of interpolation. We then establish a criterion on the boundedness of sublinear operators from H~(p,q)_A(R~n) into a quasi-Banach space; moreover, we obtain the boundedness of δ-type Calder′on-Zygmund operators from H~(p,∞)_A(R~n) to the weak Lebesgue space L~(p,∞)(R~n)(or to H~p_A(R~n)) in the ln λcritical case, from H~(p,q)_A(R~n) to L~(p,q)(R~n)(or to H~(p,q)_A(R~n)) with δ∈(0,(lnλ)/(ln b)], p ∈(1/(1+,δ),1] and q ∈(0, ∞], as well as the boundedness of some Calderon-Zygmund operators from H~(p,q)_A(R~n) to L~(p,∞)(R~n), where b := | det A|,λ_:= min{|λ| : λ∈σ(A)} and σ(A) denotes the set of all eigenvalues of A.  相似文献   

16.
The “classical” parking functions, counted by the Cayley number (n+1) n?1, carry a natural permutation representation of the symmetric group S n in which the number of orbits is the Catalan number \({\frac{1}{n+1} \left( \begin{array}{ll} 2n \\ n \end{array} \right)}\). In this paper, we will generalize this setup to “rational” parking functions indexed by a pair (a, b) of coprime positive integers. These parking functions, which are counted by b a?1, carry a permutation representation of S a in which the number of orbits is the “rational” Catalan number \({\frac{1}{a+b} \left( \begin{array}{ll} a+b \\ a \end{array} \right)}\). First, we compute the Frobenius characteristic of the S a -module of (a, b)-parking functions, giving explicit expansions of this symmetric function in the complete homogeneous basis, the power-sum basis, and the Schur basis. Second, we study q-analogues of the rational Catalan numbers, conjecturing new combinatorial formulas for the rational q-Catalan numbers \({\frac{1}{[a+b]_{q}} {{\left[ \begin{array}{ll} a+b \\ a \end{array} \right]}_{q}}}\) and for the q-binomial coefficients \({{{\left[ \begin{array}{ll} n \\ k \end{array} \right]}_{q}}}\). We give a bijective explanation of the division by [a+b] q that proves the equivalence of these two conjectures. Third, we present combinatorial definitions for q, t-analogues of rational Catalan numbers and parking functions, generalizing the Shuffle Conjecture for the classical case. We present several conjectures regarding the joint symmetry and t = 1/q specializations of these polynomials. An appendix computes these polynomials explicitly for small values of a and b.  相似文献   

17.
We conjecture that every infinite group G can be partitioned into countably many cells \(G = \bigcup\limits_{n \in \omega } {A_n }\) such that cov(A n A n ?1 ) = |G| for each nω Here cov(A) = min{|X|: X} ? G, G = X A}. We confirm this conjecture for each group of regular cardinality and for some groups (in particular, Abelian) of an arbitrary cardinality.  相似文献   

18.
We consider a fractional Adams method for solving the nonlinear fractional differential equation \(\,^{C}_{0}D^{\alpha }_{t} y(t) = f(t, y(t)), \, \alpha >0\), equipped with the initial conditions \(y^{(k)} (0) = y_{0}^{(k)}, k=0, 1, \dots , \lceil \alpha \rceil -1\). Here, α may be an arbitrary positive number and ?α? denotes the smallest integer no less than α and the differential operator is the Caputo derivative. Under the assumption \(\,^{C}_{0}D^{\alpha }_{t} y \in C^{2}[0, T]\), Diethelm et al. (Numer. Algor. 36, 31–52, 2004) introduced a fractional Adams method with the uniform meshes t n = T(n/N),n = 0,1,2,…,N and proved that this method has the optimal convergence order uniformly in t n , that is O(N ?2) if α > 1 and O(N ?1?α ) if α ≤ 1. They also showed that if \(\,^{C}_{0}D^{\alpha }_{t} y(t) \notin C^{2}[0, T]\), the optimal convergence order of this method cannot be obtained with the uniform meshes. However, it is well-known that for yC m [0,T] for some \(m \in \mathbb {N}\) and 0 < α < m, the Caputo fractional derivative \(\,^{C}_{0}D^{\alpha }_{t} y(t) \) takes the form “\(\,^{C}_{0}D^{\alpha }_{t} y(t) = c t^{\lceil \alpha \rceil -\alpha } + \text {smoother terms}\)” (Diethelm et al. Numer. Algor. 36, 31–52, 2004), which implies that \(\,^{C}_{0}D^{\alpha }_{t} y \) behaves as t ?α??α which is not in C 2[0,T]. By using the graded meshes t n = T(n/N) r ,n = 0,1,2,…,N with some suitable r > 1, we show that the optimal convergence order of this method can be recovered uniformly in t n even if \(\,^{C}_{0}D^{\alpha }_{t} y\) behaves as t σ ,0 < σ < 1. Numerical examples are given to show that the numerical results are consistent with the theoretical results.  相似文献   

19.
Given a complete ortho-normal system  = (0, 1, 2, . . .) of L2H(D), the space of holomorphic and absolutely square integrable functions in the bounded domain D of Cn, we construct a holomorphic imbedding ι : D →■(n, ∞), the complex infinite dimensional Grassmann manifold of rank n. It is known that in ■(n, ∞) there are n closed (μ, μ)-forms τμ (μ = 1, . . . , n) which are invariant under the holomorphic isometric automorphism of ■(n, ∞) and generate algebraically all the harmonic differential forms of ...  相似文献   

20.
In the space L 2(?2), we consider the operator
$H = \left( {\frac{1}{i}\frac{\partial }{{\partial x_1 }} - x_2 } \right)^2 + \left( {\frac{1}{i}\frac{\partial }{{\partial x_2 }} + x_1 } \right)^2 + V,V = V(x) \in L_2 (\mathbb{R}^2 ).$
. We study the spectrum of H and, for VC 0 2 (?2), prove the trace formula
$\sum\limits_{k = 0}^\infty {\left( {\sum\limits_{i = - k}^\infty {(4k + 2 - \mu _k^{(i)} ) + c_0 } } \right)} = \frac{1}{{8\pi }}\int\limits_{\mathbb{R}^2 } {V^2 (x)dx,} $
where c 0 = π ?1 \(\smallint _{\mathbb{R}^2 } \) V(x) dx and the µ k (i) are the eigenvalues of H.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号