首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
甲烷直接氧化制甲醇Ⅱ.催化膜反应器(CMR)   总被引:1,自引:0,他引:1  
采用溶胶-凝胶(Sol-Gel)法制备了微孔结构均匀的“SiO_2/陶瓷”膜和“Mo-Co-·O/SiO_2/陶瓷”催化功能膜,并用XRD、SEM和孔径测定等技术进行了表征。在常压、500~700℃的条件下,在催化膜反应器(CMR)中考察了甲烷氧化制甲醇的反应。在相似的反应条件下(转化率为1.0%),用CMR(甲醇选择性11.2%)可获得较固定床反应器(甲醇选择性4.5%)高得多的甲醇选择性。  相似文献   

2.
用溶胶-凝胶法制备了“SiO2/陶瓷”非对称无机膜,并用该膜制备了反应气吹扫催化膜反应器(RSCMR0装置。在RSCMR上考察了甲烷一步催化氧化制甲醇反应。结果表明,在研究的范围内,增加氧气或甲烷的浓度和吹扫气的流速(即总的反应气流量)有利于提高甲醇的收率;甲醇在反应条件下的热不稳定性是影响目标反应选择性的重要原因。RSCMR较膜反应(CMR0系统能更有效地抑制甲醇的热分解,因而可得到较CMR更高  相似文献   

3.
用溶胶-凝胶法制备了“SiO_2/陶瓷”非对称无机膜,并用该膜制备了反应气吹扫催化膜反应器(RSCMR)装置。在RSCMR上考察了甲烷一步催化氧化制甲醇反应。结果表明,在研究的范围内,增加氧气或甲烷的浓度和吹扫气的流速(即总的反应气流量)有利于提高甲醇的收率;甲醇在反应条件下的热不稳定性是影响目标反应选择性的重要原因。RSCMR较膜反应器(CMR)系统能更有效地抑制甲醇的热分解,因而可得到较CMR更高的甲醇收率。当反应温度为700℃时,甲醇的收率在CMR中为0.5g/m ̄2h,在RSCMR中可达0.9g/m ̄2h。  相似文献   

4.
目前,天然气转化为高附加值化工产品的应用越来越受到人们关注.甲烷作为天然气的主要成分,其转化和应用是天然气化工领域的重要研究方向.而甲烷直接氧化制甲醇长久以来一直是研究重点.甲烷直接氧化制甲醇与传统的甲烷二步法间接转化相比,有节能和工艺简化的突出特点.然而,甲醇直接氧化制甲醇过程所面临的主要问题有:(1)甲烷分子的活化能很高,需要苛刻的操作条件才能活化参与反应;(2)反应进行的程度难以控制,生成的甲醇会进一步被氧化生成较多副产物,大大降低甲醇收率.因此,高效活化甲烷分子和抑制甲醇深度氧化是促进该过程工业化的重要研究内容.本文主要论述了非均相、气相均相和液相体系中甲烷直接氧化制甲醇的研究进展.在甲烷非均相氧化过程中,采用过渡金属氧化物作为催化剂在高温条件下催化甲烷部分氧化反应,其中,钼系和铁系催化剂的研究最为广泛.研究表明, MoO3可作为催化剂的主要活性组分,尤以 MoO3/Ga2O3催化剂性能最好,得到甲醇收率最高.在铁系催化剂中, Fe-ZSM-5 催化反应的甲醇选择性和收率都相对较高;但是每次反应后催化剂都需要重新活化,这种间歇性操作会增加成本,不利于工业化应用.总之,甲烷的非均相氧化过程存在易形成金属聚集体、催化剂选择性低以及甲醇收率低(5%)等问题,需要深入系统地研究解决.然而,与非均相氧化过程相比,操作较为简单的甲烷气相均相氧化作为目前最有工业前景的过程受到越来越多关注.在此过程中,影响反应的主要因素有反应器、反应条件(反应压力、反应温度和反应时间等)以及添加的介质等.反应器的特殊设计需要考虑的方面有反应产物的分离与转移、反应热的移除以有效提高甲烷的转化率,比如膜反应器对物质的分离作用.反应压力对反应过程的影响较为复杂.基于动力学因素,提高反应压力可以较大幅度地增加甲醇收率,同时最佳反应温度降低,但是,当压力高于8.0 MPa时,设备成本消耗大幅增加.另外,研究表明,进料中加入 NOx作为添加介质可以提高甲烷转化率和甲醇选择性,同时降低初始反应温度.与前两个氧化体系相比,液相均匀氧化过程能够获得较高的甲烷转化率与甲醇选择性.但是液相体系中强腐蚀性介质的使用增加了设备成本,阻碍了该过程工业化的应用进程.因此,促进液相体系工业化的关键就是开发绿色高效的催化剂.  相似文献   

5.
6.
氧泵型催化膜反应器中甲烷氧化偶联反应—SEM和XPS研究   总被引:1,自引:0,他引:1  
国秀梅  陈洪钫 《分子催化》1995,9(5):393-396
氧泵型催化膜反应器中甲烷氧化偶联反应—SEM和XPS研究国秀梅,陈洪钫(天津大学化工系,天津300072)关键词甲烷氧化偶联,氧泵型催化膜反应器,SEM,XPS由于氧泵型催化膜反应器具有可简化分离过程,改变催化剂性质,控制传递氧量,避免副反应发生等优...  相似文献   

7.
甲烷光催化氧化制甲醇研究进展   总被引:2,自引:0,他引:2  
随着经济的发展,人们对能源的需求量日益增加.目前,世界上石油资源储量有限,而天然气是非常丰富的石油化工燃料资源,储量很大.现已探明的世界天然气储量为142.1万亿立方米,其能量相当于9143亿桶原油,远景储量为250~350万亿立方米.天然气资源与液体石油资源相比,其储量  相似文献   

8.
二氧化碳存在下甲烷氧化细菌催化甲烷生物合成甲醇   总被引:6,自引:0,他引:6  
 在甲烷单加氧酶和脱氢酶系的作用下,甲烷氧化细菌Methylosinus trichosporium IMV 3011可以把甲烷氧化成二氧化碳. 在反应体系中充入一定比例的二氧化碳后,检测到了甲醇的积累. 混合气中CO2,CH4,O2和N2的体积比为2∶1∶1∶1时甲醇的积累量达到最大. 在超滤膜反应器中进行了连续反应,利用反应混合气产生的压力将生成的甲醇从反应体系中分离. 连续反应198 h后甲醇的积累量没有明显下降.  相似文献   

9.
尉迟力  夏仕文 《分子催化》1997,11(5):349-353
甲基球菌3021中的甲烷单加氧酶在甲烷生物催化氧化制甲醇的反应中具有重要的作用。实验结果表明,3021菌的热稳定性好于其它甲烷氧化细菌可在45℃反应5h。在200mmol/L磷酸缓冲液中,它的甲醇累积速率比甲基弯菌IMV3011高。乙二胺四乙酸,甲酸钠,NaCl可明显增加甲醇累积量。  相似文献   

10.
甲烷氧化细菌催化二氧化碳生物合成甲醇的研究   总被引:2,自引:0,他引:2  
甲烷氧化细菌中包含的甲烷单加氧酶(MMO)、甲醇脱氢酶(ADH)、甲醛脱氢酶(FaldDH)、甲酸脱氢酶(FateDH)经过一系列反应能够把甲烷深度氧化生成二氧化碳,并生成一定的能量物质.把二氧化碳还原为甲醇是一个需要能量的过程,目前还没有已知的有机体在温和条件下完成这一反应.研究发现,甲基弯菌Methylosi-nus trichosporium IMV 3011可以催化二氧化碳生物转化生成甲醇.在休眠的悬浮细胞中充人二氧化碳后,反应一段时间在反应液中检测到了甲醇.二氧化碳转化成甲醇是一个需要能量推动的反应,为了补充反应所消耗的能量.反应一段时间后需要用甲烷进行再生,以恢复细胞中的还原当量NADH.我们进行了反应再生的交替连续批式反应,甲醇积累量能够维持在一个比较稳定的水平.理论上,反应不会增加温室效应,这是一个有效的、环境友好的、可恢复的反应过程.  相似文献   

11.
研究了利用无机载体(活性炭、氧化铝、分子筛等)吸附法和天然藻胶(海藻酸钙等)包埋法制备的固定化甲烷氧化细菌的催化性能及其在生物反应器中的反应,结果表明,在进行甲烷制甲醇的反应中、活性炭吸附制备的固定化细胞的操作稳定性最好,但其初始酶活性与休止游离细胞相比损失了60% ̄80%,海藻酸钙包埋的固定化细胞初始酶活性高(与游离细胞相比,可保持55% ̄90%的酶活性),但反应中甲醇累积速度很低,而双重介质(  相似文献   

12.
甲烷是燃料或化工生产中最丰富的碳基能源之一,将甲烷转化为液体或固体化学原料将成为全球能源供应的转折点.目前,许多催化此类反应的工作已有大量研究和报道.在这些反应中,甲烷选择性氧化制甲醇被认为是天然气就地价值化的一条有前途的途径.这使得甲烷低温选择性氧化制甲醇技术的发展变得非常迫切,本文综述了CH4的活化和催化转化,指出了针对特定反应的催化剂的发展趋势.讨论了理想条件下甲烷氧化制取甲烷的反应研究以及Au–Pd合金类、ZSM-5类、MOFs类、单原子类等催化剂对甲烷氧化过程的影响及其催化转化机理.最后,对温和条件下催化甲烷氧化制甲醇催化剂未来发展提出了展望和挑战.  相似文献   

13.
直接催化甲烷(CH4)氧化转化制备甲醇(DMTM)是具有较高绿色化学原子经济性的反应过程,且可在常温下进行,是潜在的实现CH4转化升级的重要过程.作为“圣杯反应”, DMTM性能通常显著受氧化剂影响,使用氧气(O2)作为氧化剂一步实现DMTM仍然极具挑战性.至今,双氧水(H2O2)仍是被报道最多的具有较高CH4转化速率和甲醇(CH3OH)选择性的绿色氧化剂.为了深入理解氧化剂如何影响DMTM反应性能,本文基于密度泛函理论计算和微观动力学分析研究了在Cu-ZSM-5, Cu-MOR和Cu-SSZ-13三种具有不同微孔尺寸的单核铜分子筛上DMTM反应机理,以确定H2O2作为氧化剂在DMTM反应中的优势和局限性.通过理论计算对比在反应条件下O2和H2O2的O–O键活化以及CH4的C–H键活化过程,发现在单核Cu分子筛中, H  相似文献   

14.
在常压及650℃下,以含1%O2的甲烷-氧混合气进料,考察了在CaO,SrO,ZnO,TiO2,CeO2和MnO2膜上外加电流为-90~90mA范围内联合体系的甲烷氧化偶联反应,结果表明,在p型和n型半导体催化膜上,发生NEMCA效应的增强因子有一极值,联合体系中泵氧OCM反应的C2烃选择性低于开路体系中反应的C2烃选择性,根据总反应速率求出了总传递系数及电化学影响效率,电化学影响效率随n型电导率  相似文献   

15.
采用溶胶-凝胶法制备了多孔氧化铝膜,并通过DSC、TGA、SEM、N_2吸附和气体透过率测定等手段,对膜的性能进行了表征.结果表明,用这种方法制备的多孔氧化铝膜是一种均匀无裂痕和具有较窄孔径分布(约4nm)的膜材料.将此多孔氧化铝膜制成膜反应器后,用于甲醇催化脱氢制甲醛的反应,发现甲醇转化率比常规反应器有较大幅度的提高.同时首次尝试采用溶胶-凝胶法将催化活性组分直接负载到多孔氧化铝膜上,从而得到了一种具有催化活性的多孔膜,并考察了它的反应活性.文中对由这两种多孔膜及钯/陶瓷复合膜制成的反应器的特点进行了比较.  相似文献   

16.
甲烷部分氧化制合成气:Ⅱ.载体的影响   总被引:2,自引:2,他引:2  
本文对三种催化剂(1%Rh/m-Sm2O3,1%Rh/c-Sm2O3)在甲烷部分氧化反应的催化活性与一氧化碳和氢的选择性作了比较。用二氧化碳的程序升温脱附测试了载体的相对碱性强弱;并用同位素交换反应测定了载体和负载型铑催化剂对甲烷分子中C-H和氧气分子中O-O键的解离活化能力,虽然催化活性高低与载体的碱性及解离活化能力之间没有直接的对应关系,但通过载体对反应活性影响的研究能揭示一般的规律,对研制甲  相似文献   

17.
王克  汪啸  宋术岩 《应用化学》2022,39(4):540-558
甲烷合成甲醇的方法包括间接法和直接催化氧化(DMTM)法,但是间接法对设备要求高,且甲烷转化率与甲醇选择性均不理想,DMTM法可通过一步反应高选择性制备甲醇,有巨大的应用潜力。对于甲烷DMTM法合成甲醇,均相催化体系通常需要特殊反应介质与贵金属催化剂相结合,虽然反应效率高,但对反应设备有腐蚀性,产物不易分离,应用前景差。液相-异相催化一般使用H_(2)O_(2)作为氧化剂,Au、Pd、Fe和Cu等金属元素作为催化剂主要活性组分,·OH是主要的氧化活性物,可在低温下实现甲烷的活化氧化。因此,异相催化体系是目前研究的主流。气相-异相催化主要使用O_(2)和N_(2)O为氧化剂,前者氧化性更强,后者对于产品选择性更好,此外,厌氧体系中H_(2)O也可直接作为氧供体,常用Cu、Fe、Rh等元素作为催化剂。沸石分子筛是使用最广泛的载体,金属氧化物、金属有机骨架化合物(MOFs)和石墨烯也均有涉及,多金属协同催化已经取得了很好的效果。本文主要总结与概述了热催化甲烷直接催化氧化制备甲醇的近年相关研究,并对今后的研究方向做出了展望。  相似文献   

18.
利用乳液法制备出MnOx纳米颗粒,将其负载于微孔管式钛膜制得MnOx负载钛基电催化膜(MnOx/Ti).运用X射线衍射(XRD)、X射线光电子能谱(XPS)、扫描电子显微镜(SEM)、循环伏安法(CV)和计时电流法(CA)等表征方法系统考察了不同焙烧温度下MnOx晶型结构、MnOx/Ti催化膜电化学性能以及催化氧化苯甲醇的变化规律.结果表明:随着焙烧温度的升高, MnOx的晶型由初始的Birnessite-MnO2逐渐转变为K0.27MnO2,再由Mn3O4最终转变为α-MnO2.所得MnOx/Ti膜中, α-MnO2晶粒尺寸小于30 nm,结晶度较高,颗粒分布均匀.同时,由于其含有不饱和配位的锰原子和氧空位以及与基体Ti之间存在键合作用,表现出优异的电化学性能和催化性能.以450 ℃焙烧所得的α-MnO2/Ti为阳极构建电催化膜反应器催化氧化苯甲醇.在反应温度为25 ℃, 50mmol·L-1苯甲醇水溶液,电流密度为2 mA·cm-2,停留时间为15 min的条件下,膜反应器苯甲醇转化率达64%,苯甲醛选择性为79%.  相似文献   

19.
在透氧膜反应器中进行甲烷氧化偶联反应的研究   总被引:2,自引:0,他引:2  
 混合导体透氧膜是一类同时具有电子和氧离子两类导电性的陶瓷膜.在高温下,氧会以氧离子的形式透过透氧膜,因此在膜表面存在丰富的氧物种(O-,O-2,O2-2和O2-),这些氧物种能够提高甲烷氧化偶联(OCM)反应的C2选择性.采用挤压的方法制备出致密的Ba0.5Sr0.5Co0.8Fe0.2O3-δ(BSCFO)透氧膜管,并考察了此透氧膜管对OCM反应的催化性能.发现BSCFO的C2生成速率比La0.6Sr0.4Co0.8Fe0.2O3-δ(LSCFO)和La-Ba-Co-Fe-O(LBCFO)要高得多,其原因主要是由于BSCFO中的氧空缺浓度比较高.高的氧空缺浓度不仅能够加速氧离子的传输,而且能够提高甲烷分子的活化速度,所以BSCFO具有比LSCFO和LBCFO更好的催化性能.C2生成速率随着反应温度及原料气中甲烷浓度的升高而升高,C2选择性取决于氧离子结合与OCM反应竞争的结果,高的氧离子结合速率会降低C2选择性.甲烷转化率随着富氧侧氧分压的升高而升高,但C2选择性则随着氧分压的升高而降低.这说\r\n明在OCM过程中气相反应起着重要的作用.  相似文献   

20.
两段法甲烷催化氧化制合成气研究   总被引:6,自引:0,他引:6  
提出了一种将甲烷低温催化燃烧和部分氧化相结合制取合成气的新方法 ,考察了反应条件对Pd Pt催化剂上的甲烷低温燃烧反应性能以及Ni-La2 O3 MgAl2 O4 -Al2 O3催化剂上甲烷催化氧化制合成气反应性能的影响。结果表明 :采用两个串联固定床反应器和分段进氧 ,不仅可以使反应原料偏离爆炸极限 ,确保过程的安全操作 ;而且一段反应器采用低温进料 ,通过少量甲烷催化燃烧 ,为二段反应提供含有少量CO2 、H2 O等氧化产物的反应原料。在二段反应器中 ,放热的甲烷部分氧化反应和吸热的蒸汽重整及CO2 重整反应同时进行 ,可避免催化剂床层飞温 ,使反应基本上在绝热恒温条件下进行 ,可用两个串联的固定床反应器实现甲烷部分氧化制合成气反应。在适合的反应条件下 ,甲烷转化率可达 93% ,H2 和CO选择性分别为 97%和 98%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号