首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Wu Y  Sun YP 《Organic letters》2006,8(13):2831-2834
[reaction: see text] An efficient enantioselective route to nonactin using a novel beta-inversion of an Evans syn aldol to construct the THF ring is presented. Through total synthesis, the structure for trilactone proposed in the literature is shown likely to be incorrect.  相似文献   

3.
Salmochelin S1, S2, MGE, DGE, and TGE were prepared through amide bond connection of an aryl C-glucosyl acyl chloride (Ar1COCl) and serine ester amines, followed by hydrogenolysis of the per-benzylated precursors. Each synthesis employed a highly diastereoselective Ni-catalyzed Negishi approach to the aryl C-glycoside subunit.  相似文献   

4.
The low therapeutic index of digoxin necessitates careful monitoring of its serum levels. Most of digoxin immunoassays suffer from interferences with digoxin-like immunoreactive substances. Since aptamers have been shown to be highly specific for their targets, the aim of this study was to develop DNA aptamers for this widely used cardiac glycoside. Digoxin was coated onto the surface of streptavidin magnetic beads. DNA aptamers against digoxin were designed using Systematic Evolution of Ligands by Exponential enrichment method (SELEX) by 11 iterative rounds of incubation of digoxin-coated streptavidin magnetic beads with synthetic DNA library, DNA elution, electrophoresis and PCR amplification. The PCR product was cloned and sequenced. Binding affinity was determined using digoxin–BSA conjugate, coated onto ELISA plate. Inhibitory effect of anti-digoxin aptamer was conducted using isolated guinea-pig atrium. Three aptamers (D1, D2 and D3) were identified. Binding studies of fluorescein-labeled truncated (without primer binding region) D1 and D2 and full length D1 anti-digoxin aptamers were performed and their corresponding dissociation constants values were 8.2 × 10−9, 44.0 × 10−9 and 17.8 × 10−9 M, respectively. This is comparable to what other workers have obtained for interaction of monoclonal antibodies raised against digoxin. There was little difference in binding affinity between full length and truncated anti-digoxin D1 aptamer. D1 anti-digoxin aptamer also inhibited the effects of digoxin on the isolated guinea-pig atrium. D1 anti-digoxin aptamer distinguished between digoxin and ouabain in both tissue study and binding experiments. Our finding indicated that D1 anti-digoxin aptamer can selectively bind to digoxin. Further studies might show its suitability for use in digoxin assays and as a therapeutic agent in life-threatening digoxin toxicity.  相似文献   

5.
The siderophore enterobactin (Ent) is produced by many species of enteric bacteria to mediate iron uptake. This iron scavenger can be reincorporated by the bacteria as the ferric complex [Fe(III)(Ent)](3)(-) and is subsequently hydrolyzed by an esterase to facilitate intracellular iron release. Recent literature reports on altered protein recognition and binding of modified enterobactin increase the significance of understanding the structural features and solution chemistry of ferric enterobactin. The structure of the neutral protonated ferric enterobactin complex [Fe(III)(H(3)Ent)](0) has been the source of some controversy and confusion in the literature. To demonstrate the proposed change of coordination from the tris-catecholate [Fe(III)(Ent)](3)(-) to the tris-salicylate [Fe(III)(H(3)Ent)](0) upon protonation, the coordination chemistry of two new model compounds N,N',N'-tris[2-(hydroxybenzoyl)carbonyl]cyclotriseryl trilactone (SERSAM) and N,N',N'-tris[2-hydroxy,3-methoxy(benzoyl)carbonyl]cyclotriseryl trilactone (SER(3M)SAM) was examined in solution and solid state. Both SERSAM and SER(3M)SAM form tris-salicylate ferric complexes with spectroscopic and solution thermodynamic properties (with log beta(110)() values of 39 and 38 respectively) similar to those of [Fe(III)(H(3)Ent)](0). The fits of EXAFS spectra of the model ferric complexes and the two forms of ferric enterobactin provided bond distances and disorder factors in the metal coordination sphere for both coordination modes. The protonated [Fe(III)(H(3)Ent)](0) complex (d(Fe)(-)(O) = 1.98 A, sigma(2)(stat)(O) = 0.00351(10) A(2)) exhibits a shorter average Fe-O bond length but a much higher static Debye-Waller factor for the first oxygen shell than the catecholate [Fe(III)(Ent)](3)(-) complex (d(Fe)(-)(O) = 2.00 A, sigma(2)(stat)(O) = 0.00067(14) A(2)). (1)H NMR spectroscopy was used to monitor the amide bond rotation between the catecholate and salicylate geometries using the gallic complexes of enterobactin: [Ga(III)(Ent)](3)(-) and [Ga(III)(H(3)Ent)](0). The ferric salicylate complexes display quasi-reversible reduction potentials from -89 to -551 mV (relative to the normal hydrogen electrode NHE) which supports the feasibility of a low pH iron release mechanism facilitated by biological reductants.  相似文献   

6.
7.
Zhang X  Liu N  Yang F  Li J  Wang L  Chen G  Gao P 《Electrophoresis》2012,33(2):280-287
Based on digital image analysis techniques and a series of optimizations in native electrophoresis, a new direct method to simultaneously detect the intrinsic properties of each active component in the enzymatic system of glycoside hydrolase was established. The key technique is that the concentration changes of substrate (or product) on the gel can be determined quantitatively by the gray value changes of the corresponding band after electrophoretic separation. In this manner, the catalytic characteristics of each glycoside hydrolase component were demonstrated in situ and were easily determined after immersing the gel in a series of solutions containing substrates or their derivatives. Because of its high throughput, great sensitivity, and convenient operation, this method can be used to demonstrate the natural diversity of glycoside hydrolases and to study spatial and temporal regulation in multienzyme expression systems. Thus, it is an effective approach to study the functional proteomics of glycoside hydrolases.  相似文献   

8.
In an effort to reduce organ replacement and enhance tissue repair, there has been a tremendous effort to create biomechanically optimized scaffolds for tissue engineering applications. In contrast, the development and characterization of electroactive scaffolds has attracted little attention. Consequently, the creation and characterization of a carbon nanotube based poly(lactic acid) nanofiber scaffold is described herein. After 28 d in physiological solution at 37 °C, a change in the mass, chemical properties and polymer morphology is seen, while the mechanical properties and physical integrity are unaltered. No adverse cytotoxic affects are seen when mesenchymal stem cells are cultured in the presence of the scaffold. Taken together, these data auger well for electroactive tissue engineering.

  相似文献   


9.
It has been shown by HPLC, electrophoresis, etc., that, in vitro, the nuclei of neurons of rabbit and cow brains synthesize two glycoproteins (M 25–30 kDa and 10–15 kDa). The influence of some neurotropic compounds on the kinetics of the nuclear protein synthesis has been investigated. New inhibitors of this biosynthesis have been found.A. S. Sadykov Institute of Bioorganic Chemistry, Academy of Sciences of the Republic of Uzbekistan, Tashkent, fax 627071. Translated from Khimiya Prirodnykh Soedinenii, No. 1, pp. 112–118, January–February, 1994.  相似文献   

10.
JH Yeon  HR Ryu  M Chung  QP Hu  NL Jeon 《Lab on a chip》2012,12(16):2815-2822
This paper describes the in vitro formation and characterization of perfusable capillary networks made of human umbilical vein endothelial cells (HUVECs) in microfluidic devices (MFDs). Using this platform, an array of three-dimensional (3D) tubular capillaries of various dimensions (50-150 μm in diameter and 100-1600 μm in length) can be formed reproducibly. To generate connected blood vessels, MFDs were completely filled with fibrin gel and subsequently processed to selectively leave behind gel structures inside the bridge channels. Following gel solidification, HUVECs were coated along the gel walls, on opposite ends of the patterned 3D fibrin gel. After 3-4 days, HUVECs migrating into the fibrin gel from opposite ends fused with each other, spontaneously forming a connected vessel that expressed tight junction proteins (e.g., ZO-1), which are characteristic of post-capillary venules. With ready access to a perfusable capillary network, we demonstrated perfusion of the vessels and imaged red blood cells (RBCs) and beads flowing through them. The results were reproducible (~50% successful perfusable capillaries), consistent, and could be performed in a parallel manner (9 devices per well plate). Additionally, compatibility with high resolution live-cell microscopy and the possibility of incorporating other cell types makes this a unique experimental platform for investigating basic and applied aspects of angiogenesis, anastomosis, and vascular biology.  相似文献   

11.
12.
The metabolism of borneol is studied by the analysis of incubations of in vitro-prepared rat liver microsomes. A sensitive gas chromatography (GC)-mass spectrometry (MS) method is developed for the identification of borneol and its metabolites. Four novel metabolites, which have not previously been reported, are isolated and confirmed by comparison of the GC-MS method. The biotransformation pathway of borneol in rat liver microsomes is proposed based on the in vitro results.  相似文献   

13.
Most species of bacteria employ siderophores to acquire iron. The chirality of the ferric siderophore complex plays an important role in cell recognition, uptake, and utilization. Corynebactin, isolated from Gram-positive bacteria, is structurally similar to enterobactin, a well known siderophore isolated from Gram-negative bacteria, but contains L-theronine instead of L-serine in the trilactone backbone. Corynebactin also contains a glycine spacer unit in each of the chelating arms. A hybrid analogue (serine-corynebactin) has been synthesized. The chirality and relative conformational stability of the three ferric complexes of enterobactin, corynebactin, and the hybrid has been investigated. In contrast to enterobactin, corynebactin assumes a Lambda configuration. However, the ferric serine-corynebactin hybrid forms a racemic mixture, only slightly favoring the Lambda conformation.  相似文献   

14.
Journal of Thermal Analysis and Calorimetry - In this work, Ag-doped CeO2 samples containing 0.5 mol% Ag+ were successfully synthesized by the polymeric precursor method and then calcined...  相似文献   

15.
This study describes the synthesis, characterization, and in vitro evaluation of N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer-gadolinium (Gd)-doxorubicin (Dox) conjugates. Copolymers of HPMA were derivatized to incorporate side chains for Gd chelation and Dox conjugation. The conjugates were characterized by their side chain contents, T(1) relaxivity (r(1)), stability, and in vitro cytotoxicity. High stability and relaxivity of these conjugates coupled with low toxicity show their potential for monitoring the in vivo fate of HPMA-based drug delivery systems by magnetic resonance imaging techniques.  相似文献   

16.
Urokinase (EC 3.4.4.a) was immobilized on collagen membrane. The urokinase-collagen membrane gave a flat pH profile from 7.5 to 9.5. It was more stable against heat than native urokinase. Furthermore, the stability of urokinase in the pH range of 7.0-8.8 was increased with immobilization. The collagen fibril network might stabilize urokinase. The diffusion coefficients of urea, uric acid, and creatinine through the urokinase-collagen membrane were in the range of 2.5-4.5 x 10-7 cm3/sec. The diffusion coefficients decreased to the range of 6.9-8.2 x 10-8 cm2/sec when fibrin clot was formed on the membranein vitro. Immobilized urokinase activates plasmin which lyzes fibrin clot. Therefore, fibrin clot formed on the membrane could be lyzed during prolonged incubation at 37°C and the diffusion coefficients restored to the initial values. The fibrin clot formedin vivo may be lyzed with immobilized urokinase.  相似文献   

17.
Because the hydrolysis of ferric ion makes it very insoluble in aerobic, near neutral pH environments, most species of bacteria produce siderophores to acquire iron, an essential nutrient. The chirality of the ferric siderophore complex plays an important role in cell recognition, uptake, and utilization. Corynebactin, isolated from Gram-positive bacteria, is structurally similar to enterobactin, a well-known siderophore first isolated from Gram-negative bacteria, but contains L-threonine instead of L-serine in the trilactone backbone. Corynebactin also contains a glycine spacer unit in each of the chelating arms. A hybrid analogue (serine-corynebactin) has been prepared which has the trilactone ring of enterobactin and the glycine spacer of corynebactin. The chirality and relative conformational stability of the three ferric complexes of enterobactin, corynebactin, and the hybrid have been investigated by molecular modeling (including MM3 and pBP86/DN density functional theory calculations) and circular dichroism spectra. While enterobactin forms a Delta-ferric complex, corynebactin is Lambda. The hybrid serine-corynebactin forms a nearly racemic mixture, with the Lambda-conformer in slight excess. Each ferric complex has four possible isomers depending on the metal chirality and the conformation of the trilactone ring. For corynebactin, the energy difference between the two possible Lambda conformations is 2.3 kcal/mol. In contrast, only 1.5 kcal/mol separates the inverted Lambda- and normal Delta-configuration for serine-corynebactin. The small energy difference of the two lowest energy configurations is the likely cause for the racemic mixture found in the CD spectra. Both the addition of a glycine spacer and methylation of the trilactone ring (serine to threonine) favor the Lambda-conformation. These structural changes suffice to change the chirality from all Delta (enterobactin) to all Lambda (corynebactin). The single change (glycine spacer) of the hybrid ferric serine-corynebactin gives a mixture of Delta and Lambda, with the Lambda in slight excess.  相似文献   

18.
Wang G  Park J  Wexler D  Park MS  Ahn JH 《Inorganic chemistry》2007,46(12):4778-4780
In2O3 semiconductor nanowires were synthesized by the chemical vapor deposition method through carbon thermal reduction at 900 degrees C with 95% Ar and 5% O2 gas flow. The In2O3 nanowires were characterized by field emission scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HRTEM), and photoluminescence spectroscopy (PL). For the first time, we observed the formation of corundum-type h-In2O3 nanowires and branched In2O3 nanowires. The PL spectra of In2O3 nanowires show strong visible red emission at 1.85 eV (670 nm) at low temperature, possibly caused by a small amount of oxygen vacancies in the nanowire crystal structure.  相似文献   

19.
The fabrication of carvacrol-loaded chitosan nanoparticles was achieved by a two-step method, i.e., oil-in-water emulsion and ionic gelation of chitosan with pentasodium tripolyphosphate. The obtained particles possessed encapsulation efficiency (EE) and loading capacity (LC) in the ranges of 14-31% and 3-21%, respectively, when the initial carvacrol content was 0.25-1.25 g/g of chitosan. The individual particles exhibited a spherical shape with an average diameter of 40-80 nm, and a positively charged surface with a zeta potential value of 25-29 mV. The increment of initial carvacrol content caused a reduction of surface charge. Carvacrol-loaded chitosan nanoparticles showed antimicrobial activity against Staphylococcus aureus, Bacillus cereus and Escherichia coli with an MIC of 0.257 mg/mL. The release of carvacrol from chitosan nanoparticles reached plateau level on day 30, with release amounts of 53% in acetate buffer solution with pH of 3, and 23% and 33% in phosphate buffer solutions with pH of 7 and 11, respectively. The release mechanism followed a Fickian behavior. The release rate was superior in an acidic medium to either alkaline or neutral media, respectively.  相似文献   

20.
Chemotherapy is a common method for tumor treatment. However, the non-specific distribution of chemotherapeutic drugs causes the death of normal cells. Nanocarriers, particularly mesoporous carriers, can be modified to achieve targeted and controlled drug release. In this study, mesoporous polydopamine (MPDA) was used as a carrier for the antitumor drug doxorubicin (DOX). To enhance the release efficiency of DOX in the tumor microenvironment, which contains high concentrations of glutathione (GSH), we used N,N-bis(acryloyl)cysteamine as a cross-linking agent to encapsulate the surface of MPDA with fucoidan (FU), producing MPDA-DOX@FU-SS. MPDA-DOX@FU-SS was characterized via transmission electron microscopy, thermogravimetric analysis, and X-ray photoelectron spectroscopy (XPS), and its antitumor efficacy in vitro was investigated. The optimal conditions for the preparation of MPDA were identified as pH 12 and 20 °C, and the optimal MPDA-to-FU ratio was 2:1. The DOX release rate reached 47.77% in an in vitro solution containing 10 mM GSH at pH 5.2. When combined with photothermal therapy, MPDA-DOX@FU-SS significantly inhibited the growth of HCT-116 cells. In conclusion, MPDA-DOX@FU-SS may serve as a novel, highly effective tumor suppressor that can achieve targeted drug release in the tumor microenvironment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号