首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present study, two new ligands, 4-chlorobenzal-azino-isonitrosoacetophenone (L1), 4-methylbenzal-azino-isonitrosoacetophenone (L2) and their metal complexes were synthesized using acetophenone as a starting material. The coloured complexes were prepared by the addition of chloride salts of Ni(II), Co(II), Cu(II) and Zr(IV) ions to a solution of ligands. In conclusion, the structures of the obtained ligands and their complexes were characterized by FT-IR, and 1H NMR spectra, AAS (atomic absorption spectrum) analysis, magnetic susceptibilities as well as elemental analysis.  相似文献   

2.
4,4′-Bis(chloroacetyl)diphenyl ether (HL) was synthesized from chloroacetyl chloride and diphenyl ether in the presence of AlCl3 as catalyst by Friedel-Crafts reaction. Subsequently, its keto oxime (H2L) and glyoxime (H4L) derivatives were also prepared. Then, five new substituted 4,4′-oxy-bis(aminophenyl-glyoximes) (H4L1–5) were synthesized from 4,4′-oxy-bis(chlorophenylglyoxime) and the corresponding amines. The Ni(II), Cu(II), and Co(II) complexes of these ligands were prepared. The structures of these ligands and their complexes were identified by FT-IR, 1H NMR, and ICP-AES spectral data, elemental analyses, and magnetic measurements.  相似文献   

3.
A new Schiff base ligand was prepared by condensation of 2-hydroxy-4-methoxybenzaldehyde with 1,2-propanediamine. The ligand and its metal complexes were characterized by elemental analysis, FT-IR, 1H and 13C NMR, magnetic moment, molar conductance, UV-Vis, SEM and thermal analysis (TGA). The molar conductance measurements indicated that all the metal complexes were non-electrolytes. IR spectra showed that ligand (L) behaves as a neutral tetradentate ligand and binds to the metal ions by the two azomethine nitrogen atoms and two phenolic oxygen atoms. The electronic absorption spectra and magnetic susceptibility measurements indicated square planar geometry for the Ni(II) and Cu(II) complexes while other metal complexes showed tetrahedral geometry. Also the surface morphology of the complexes was studied by SEM.  相似文献   

4.
5,6-O-Cyclohexylidene-1-amino-3-azahexane (L) is synthesized from 1-chloro-2,3-O-cyclohexylidenepropane, which is prepared by the reaction between epichlorohydrin and cyclohexanone. In this reaction, BF3 · OEt2 is used as a catalyst. Complexes of Co(II), Ni(II) and Cu(II) acetates with this ligand are prepared. The structures of the ligand and its complexes are proposed based on elemental analysis, IR and UV-VIS spectroscopy, magnetic susceptibility, conductometry, and 1H and 13C NMR spectroscopy.  相似文献   

5.
A series of transition metal complexes of the type [M(ah)3](ClO4)2 (16) [M = MnII, FeII, CoII, NiII, CuII and ZnII, ah = acetylhydrazine] have been prepared by the reaction of M(ClO4)2 · 6H2O with acetylhydrazine formed in situ by the reaction of hydrazine hydrate and acetylsalicylic acid methyl ester. The chelating behaviour of acetylhydrazine and overall geometry of these complexes have been spectroscopically investigated by means of FT-IR, 1H-n.m.r. and electronic spectral techniques, as well as by elemental analysis data, molar conductance values and magnetic susceptibility measurements. Single X-ray structure determination of complex (4) revealed three acetylhydrazine ligands coordinated to nickel ion in a bidentate manner maintaining an octahedral environment. In all other complexes too, an octahedral geometry has been proposed on the basis of results obtained by various physico-chemical studies.  相似文献   

6.
Abstract

A novel dioxime, 1,2 dihydroxyimino-3,7-diaza-9,10-O-benzaloctane (LH2) was prepared by reaction of l,2-0-benzylidene-4-aza-7-aminoheptane and anti-phenylchloroglyoxime in absolute ethanol. Mononuclear complexes with a metal-ligand ratio of 1:2 were prepared with Co(II), Cu(II) and Ni(II). To elucidate the structures of the ligand and complexes, elemental analyses, IR, 1H NMR and 13C NMR spectral data and magnetic susceptibility measurements have been examined.  相似文献   

7.
Five complexes: Cu(cap)2·4H2O, Zn(cap)2, Cd(cap)2·4H2O, Pb(cap)2 and Al(cap)3·4H2O (where cap is the caproate anion?=?CH3(CH2)4COO?) were synthesized and characterized by elemental analysis, IR-spectroscopy, thermogravimetric analysis (TG), differential thermal analysis (DTA), UV-Vis spectra, 1H NMR and X-ray powder diffraction (XRD). Using the non-isothermal, Horowitz-Metzger (HM) and Coats-Redfern methods, the kinetic parameters for the non-isothermal degradation of the complexes were calculated using TG data. The infrared and 1H NMR data are in agreement with coordination through carboxylate, with cap acting as a bridging bidentate ligand. Thermogravimetric analysis of the hydrated complexes shows that the first degradation step is release of water molecules followed by decomposition of the anhydrous complexes, with release of caproate molecules.  相似文献   

8.
We report the synthesis, characterization, and thermal behavior of 1,1-diethyl-3-(4-(3,3-diethylthioureidocarbonyl)benzoyl)thiourea, 1,1-di-n-propyl-3-(4-(3,3-di-n-propylthioureido carbonyl)benzoyl)thiourea and 1,1-di-n-butyl-3-(4-(3,3-di-n-butylthioureidocarbonyl)benzoyl)thiourea and their Ni(II), Cu(II), and Co(II) complexes. The structure of the prepared compounds was determined by elemental analysis, FT-IR, 1H NMR spectroscopy and mass spectrometry. The ligands are coordinated to metal atoms in a bidentate manner yielding an essentially neutral complex of the type M3L3. Thermal decomposition of related compounds was investigated by DTA and TG techniques. The pyrolytic end product was identified by X-ray powder diffraction method. The text was submitted by the authors in English.  相似文献   

9.
4-(Chloroacetyl)diphenyl ether was synthesized from chloroacetyl chloride and diphenyl ether in the presence of AlCl3 as catalyst in a Friedel-Crafts reaction. Then, its keto oxime and dioxime derivatives were prepared. 4-phenoxy-(N-4-chlorophenylamino)phenylglyoxime (H2L) was synthesized from 4-(phenoxy)chlorophenylglyoxime and 4-chloroaniline. Ni(II), Co(II) and Cu(II) complexes of H2L were obtained. The mononuclear Ni(II), Co(II) and Cu(II) complexes of H2L have a metal–ligand ratio of 1:2 and the ligand coordinates through the two N atoms, as do most of the vic-dioximes. The structure of the ligand was identified by FT-IR, 1H NMR, 13C NMR, 13C NMR (APT) spectroscopy and elemental analysis data. The structures of the complexes were characterized on the basis of FT-IR, ICP-AES, UV-Vis, elemental analysis, magnetic susceptibility measurements, and cyclic voltammetry. The electrochemical measurements were obtained by using cyclic voltammetry in DMF solution at room temperature. The electrochemical behaviors of H2L and its complexes showed that the redox process of H2L has one irreversible oxidation wave, whereas the redox processes of the complexes have both oxidation and reduction waves with metal centered.  相似文献   

10.
Novel [1,3-di-[N 1 -4-methoxy-1,2,5-thiadiazole-3-yl-sulfanilamide(sulfametrole)]-2″4-bis-[1,3-dithiole-2-thione-4,5-dithiolate]-2′,4′-dichl-orocyclodiphosph(V)azane] (III) , was prepared and their coordinating behavior towards the metal ions Co(II), Ni(II), Cu(II), and Pd(II) was studied. The structures of the isolated products are proposed based on elemental analyses, IR, UV, 1 H, and 31 P NMR, ESR, magnetic susceptibility, molar ratio, conductometric titration and electrical conductivity measurements. The prepared complexes showed high to moderate bactericidal activity compared with the ligand.  相似文献   

11.
1,2-bis(p-aminophenoxy)ethane was obtained with reduction of 1,2-bis(p-nitrophenoxy)ethane and Pd/C as catalyst in hydrazine hydrate. Co(II), Cu(II), and Ni(II) complexes of aromatic bidentate diamine were prepared. The structure of the ligand and its complexes were characterized by IR, elemental analysis, magnetic susceptibility, conductivimetry, UV-Vis and 1H NMR spectroscopy. The metal/ligand mole ratios were found to be 1:1. The general compositions of these complexes are found to be [CoLCl2], [CuLCl2], and [CoLCl2]. The text was submitted by the authors in English.  相似文献   

12.
Eight new macrocyclic complexes were synthesized by template reaction of 1,4-bis(3-aminopropoxy)butane or (±)-trans-1,2-diaminocyclohexane with metal nitrate and 1,2-bis(2-formylphenyl)ethane and their structures were proposed on the basis of elemental analysis, FT-IR, UV-Vis, molar conductivity measurements, 1H NMR and mass spectra. The metals to ligand molar ratios of the complexes were found to be 1: 1. The complexes are 1: 2 electrolytes for Cd(II), Pb(II) and Zn(II) complexes and 1: 3 electrolytes for La(III) as shown by their molar conductivities (Λm) in DMSO at 10−3 mol L−1. Due to the existence of free ions in these complexes, such complexes are electrically conductive. The configurations of Cd(II) and Zn(II) complexes were proposed to probably tetrahedral, La(III) complexes are octahedral and Pb(II) complexes are octahedral geometry in the L1 complex and tetrahedral geometry in the L2 complex.  相似文献   

13.
Synthesis of four different types of ligands Ar[COC(NOH)R] n (Ar = biphenyl, n = 1, HL1; Ar = biphenyl, n = 2, H2L2; Ar = diphenylmethane, n = 1, HL3; Ar = diphenylmethane, n = 2, H2L4; R = furfurylamine in all ligands) and their dinuclear Co2+, Ni2+, Cu2+, and Zn2+ complexes is reported herein. These compounds were characterized by elemental analysis, ICP-OES, FT-IR spectra, and magnetic susceptibility measurements. The ligands were further characterized by 1H NMR. The results suggest that dinuclear complexes of HL1 and HL3 have a metal to ligand mole ratio of 2: 2 and dinuclear complexes H2L2 and H2L4 have a metal to ligand mole ratio of 2: 1. Square pyramidal or octahedral structures are proposed for complexes of oxime ligands. Furthermore, extraction abilities of the four ligands were also evaluated in chloroform using selected transition metal picrates such as Mn2+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Hg2+, Pb2+. The ligands show strong binding ability towards Hg2+ and Cu2+ ions.  相似文献   

14.
《中国化学会会志》2017,64(3):261-281
A new Schiff base was prepared from the reaction of 4,4′‐methylenedianiline with 2‐benzoylpyridine in 1:2 molar ratio, as well as its different metal chelates. The structures of the ligand and its metal complexes were studied by elemental analyses, spectroscopic methods (infrared [IR ], ultraviolet–visible [UV –vis], 1H nuclear magnetic resonance [NMR ], electron spin resonance [ESR ]), magnetic moment measurements, and thermal studies. The ligand acts as tetradentate moiety in all complexes. Octahedral geometry was suggested for Mn(II ), Cu(II ), Cr(III ), and Zn(II ) chloride complexes and pentacoordinated structure and square planar geometry for Co(II ), Ni(II ), Cu(NO3 )2, CuBr2 , and Pd(II ) complexes. ESR spectra of copper(II ) complexes ( 4 )–( 6 ) at room temperature display rhombic symmetry for complex ( 4 ) and axial type symmetry for complexes ( 5 ) and ( 6 ), indicating ground state for Cu(II ) complexes. The derivative thermogravimetric (DTG ) curves of the ligand and its metal complexes were analyzed by using the rate equation to calculate the thermodynamic and kinetic parameters, which indicated strong binding of the ligand with the metal ion in some complexes. Also, some of these compounds were screened to establish their potential as anticancer agents against the human hepatic cell line Hep‐G2 . The obtained IC50 value of the copper(II ) bromide complex (4.34 µg/mL ) is the highest among the compounds studied.  相似文献   

15.
Six new macrocyclic complexes were synthesized by template reaction of (±)-1,4-bis(3-aminopropoxy)butane with metal(II) nitrate and 1,10-bis(2-formylphenyl)-1,4,7,10-tetraoxadecane or 1,7-bis(2-formylphenyl)-1,4,7-trioxaheptane and their structures were proposed on the basis of elemental analysis, FT-IR, UV-Vis, molar conductivity measurements, 1H NMR and mass spectra. The metals to ligand molar ratios of the complexes were found to be 1: 1. The complexes are 1: 2 electrolytes for Pb(II) and Zn(II) complexes and 1: 3 electrolytes for La(III) as shown by their molar conductivities (Λm) in DMSO at 10−3 mol L−1. Due to the existence of free ions in these complexes, such complexes are electrically conductive. The configurations of La(III) and Zn(II) complexes were proposed to probably octahedral.  相似文献   

16.
Some new coordination compounds of cadmium(II) and mercury(II) with N,N-bis[(E)-3-(phenylprop)-2-enylidene]propanediamine (L) as a new bidentate Schiff base ligand with general formula MLX2 (X = Cl?, Br?, I?, SCN?, and N3 ?) have been prepared. They were characterized by elemental analysis, FT-infrared (FT-IR) and Ultraviolet–Visible spectra, 1H- and 13C-NMR spectra. The reasonable shifts of FT-IR and NMR spectral signals of the complexes with respect to the free ligand confirm well coordination of ligand and anions(X-) in inner sphere coordination mode. The thermal behavior of the complexes from room temperature to 800 °C shows weight loss by decomposition of the anions and ligand segments in the subsequent steps. The results showed that cadmium complexes have no water molecules (neither as lattice nor as coordinated water) and are decomposed in two temperature steps except about cadmium thiocyanate complex that is decomposed in three steps. Final residual contents of cadmium complexes are suggested to be cadmium oxide or sulfide. Mercury complexes were decomposed in three to four temperature steps. Mercury bromide and azide complexes leave out a little amount of mercury oxide in final, while mercury chloride, iodide, and thiocyanate complexes were found to be completely decomposed without any residual matter.  相似文献   

17.
A new calix[4]pyrrole functionalized vic-dioxime, 3-(4-methyl-9,9,14,14,19,19-hexaethylcalix[4]pyrrole)benzoaminoglyoxime (LH2) was synthesized from anti-chloroglyoxime and 3-aminophenyl-calix[4]pyrrole at room temperature. The mononuclear complexes {nickel(II), copper(II) and cobalt(II)} of this vic-dioxime ligand were prepared and their structures were confirmed by elemental analysis, IR and UV–Vis spectrophotometry, magnetic susceptibility; the MS, 1H and 13C NMR spectra of the LH2 ligand and its Ni(II) complex were also recorded. The experimental results indicated that the ligand:metal ratio was 2:1 in the cases of Ni(II), Cu(II) and Co(II) complexes as is with most vic-dioximes. Electrochemical properties of the ligand, and its complexes were investigated in DMSO solution by cyclic voltammetry at 200?mV?s?1 scan rate.  相似文献   

18.
Four Schiff base ligands, salabza-H2 = N,N′-bis(salicylidene)-2-aminobenzylamine, were synthesized by condensation of one mole of 2-aminobenzylamine and two moles of salicylaldehyde and/or two moles of substituted salicylaldehyde (5-OMe, 5-Br, 5-NO2). All the four Schiff bases and their Mn(II), Co(II), Cu(II) and Zn(II) complexes are characterized by UV-Vis, FT-IR, 1H NMR spectroscopy, mass spectrometry and elemental analysis. The formation constants and the Gibbs free energies were measured spectrophotometrically for 1:1 complexes in methanol in constant ionic strength (I = 0.1 mol dm−3 NaClO4) and at 25°C. The data refinement was carried out with the SQUAD program. The trend of formation constants of H2L1 with M(II) follows the order: Mn(II) (3.97) < Zn(II) (4.30) < Co(II) (4.89) < Cu(II) (5.73)  相似文献   

19.
Schiff base ligand (H3L) was prepared from the condensation reaction of protochatechualdehyde (3,4-dihydroxybenzaldhyde)with 2-amino phenol. From the direct reaction of the ligand (H3L) with Co(II), Ni(II) and Cu(II) chlorides, and Fe(III)and Zn(II)nitrates in 2?M/1?L molar ratio, the five new neutral complexes were prepared. The characterization of the newly formed compounds was done by 1H NMR, UV?CVis, and IR spectroscopy and elemental analysis. The in vitro antibacterial activity of the metal complexes was studied and compared with that of free ligand.  相似文献   

20.
Zinc(II) and mercury(II) complexes were prepared by reacting isatin-3-thiosemicarbazone (ISTSCH) with zinc(II) acetate or mercury(II) bromide. The complexes were characterized by IR, Raman, diffuse reflectance, 1H and 13C NMR spectra and elemental analysis. Tetrahedral structures for Zn(ISTSC)2 and Hg(ISTSCH)Br2 are suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号