首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
A rapid detection method for nucleic acid based on bioluminescence resonance energy transfer (BRET) from the luminescence donor Renilla luciferase to an acceptor quantum dot upon oligonucleotide probe hybridization has been developed. Utilizing a competitive assay, we detected the target nucleic acid by correlating the BRET signal with the amount of target present in the sample. This method allows for the detection of as little as 4 pmol (20 nM) of nucleic acid in a single-step, homogeneous format both in vitro in a buffer matrix as well as in a cellular matrix. Using this method, one may perform nucleic acid detection in as little as 30 min, showing much improvement over time-consuming blotting methods and solid-phase methods which require multiple wash steps to remove unbound probe. This is the first report on the use of quantum dots as a BRET acceptor in the development of a nucleic acid hybridization assay. An erratum to this article can be found at  相似文献   

2.
Nanostructural hybrid organic-inorganic metal halide perovskites offer a wide range of potential applications including photovoltaics, solar cells, and light emitting diodes. Up to now the surface stabilizing ligands were used solely to obtain the optimal properties of nanoparticles in terms of dimensionality and stability, however their possible additional functionality was rarely considered. In the present work, hybrid lead bromide perovskite nanoparticles (PNP) were prepared using a unique approach where a peptide nucleic acid is used as a surface ligand. Methylammonium lead bromide perovskite colloidal nanoparticles stabilized by thymine-based peptide nucleic acid monomer (PNA-M) and relevant trimer (PNA-T) were prepared exhibiting the size below 10 nm. Perovskite structure and crystallinity were verified by X-ray powder diffraction spectroscopy and high resolution transmission electron microscopy. PNP-PNA-M and PNP-PNA-T colloidal dispersions in chloroform and toluene possessed green-blue fluorescence, while Fourier-transform infrared spectroscopy (FT-IR) and quantum chemical calculations showed that the PNA coordinates to the PNP surface through the primary amine group. Additionally, the sensing ability of the PNA ligand for adenine nucleic acid was demonstrated by photoluminescence quenching via charge transfer. Furthermore, PNP thin films were effectively produced by the centrifugal casting. We envision that combining the unique, tailored structure of peptide nucleic acids and the prospective optical features of lead halide perovskite nanoparticles could expand the field of applications of such hybrids exploiting analogous ligand chemistry.  相似文献   

3.
A historical perspective of the development of spherical nucleic acid (SNA) conjugates and other three-dimensional nucleic acid nanostructures is provided. This Perspective details the synthetic methods for preparing them, followed by a discussion of their unique properties and theoretical and experimental models for understanding them. Important examples of technological advances made possible by their fundamental properties spanning the fields of chemistry, molecular diagnostics, gene regulation, medicine, and materials science are also presented.  相似文献   

4.
Garner P  Dey S  Huang Y  Zhang X 《Organic letters》1999,1(3):403-405
[formula: see text] The synthesis and characterization of prototype alpha-helical peptide nucleic acid (alpha PNA) modules 1-3 as well as disulfide dimers 4 and 5 are reported. These molecules combine an alpha-helical peptidyl scaffold with well-defined nucleobase molecular recognition patterns and could serve as a basis for novel antisense and/or antigene agents. Structure assignments for these alpha PNAs were supported by MALDI-TOF mass spectrometry, and the alpha-helical nature of 4 in water was confirmed by circular dichroism (CD) spectroscopy.  相似文献   

5.
A new method based on near-infrared (near-IR) fluorescence recovery was presented for the determination of nucleic acids. This method employed a two-reagent system composed of anionic tetracarboxy aluminum phthalocyanine (AlC4Pc) and polycationic poly-lysine. The fluorescence of AlC4Pc, with the maximum excitation and emission wavelengths at 620 and 701 nm, respectively, was quenched by poly-lysine with a proper concentration, but recovered by adding nucleic acids. Under optimal conditions, the recovered fluorescence was in proportional to the concentration of nucleic acids. The linear ranges of the calibration curves were 5-200 ng mL(-1) for both calf thymus DNA (ctDNA) and fish sperm DNA (fsDNA) with the detection limit of 2.6 ng mL(-1) for ctDNA and 2.1 ng mL(-1) for fsDNA. The relative standard deviation (n = 6) was 1.9 and 1.3% for 50 ng mL(-1) ctDNA and fsDNA, respectively. The proposed method was applied to the determination of nucleic acids in synthetic samples with satisfactory results.  相似文献   

6.
A new combined solid-liquid phase synthesis method for a spin labeled peptide nucleic acid (PNA) is developed. The methodology involved initial preparation of a protected PNA on solid phase, followed by efficient solution phase coupling to a spin label containing a reactive carboxylic group. This strategy allows to maintain the integrity of the nitroxide moiety during the various steps of chemical synthesis assuring in the same time the fidelity of the hybridization assay. This compound can be used as a reporter molecule to investigate the binding of peptide nucleic acids to oligonucleotide sequences (DNA or RNA) by EPR spectroscopy.  相似文献   

7.
8.
We reviewed and summarized the established methods and the breakthrough of the techniques for locating modifications in nucleic acids. In addition, we discussed the principles, applications, advantages and drawbacks of these methods.  相似文献   

9.
In vitro selection can be used to generate nucleic acid binding species (aptamers) and catalysts (ribozymes) that can recognize a variety of molecules. Because nucleic acid function is largely derived from readily tabulated secondary structures, it has proven possible to engineer aptamers and ribozymes to function as biosensors. Labeling nucleic acids with reporter molecules has yielded simple antibody substitutes, but by relying on ligand-dependent conformational changes it has also proven possible to generate biosensors that can recognize and specifically report the presence of ligands in homogenous solution. It may prove possible to generate signaling aptamers and allosteric ribozymes (aptazymes) that are responsive to a large fraction of an organismal proteome or metabolome using automated methods. Nucleic acid biosensor arrays for non-nucleic acid targets could likely be generated with the same facility as DNA chips.  相似文献   

10.
In the last decade, increased efforts have been directed toward the development of oligonucleotide-based technologies for genome analyses, diagnostics, or therapeutics. Among them, an antigene strategy is one promising technology to regulate gene expression in living cells. Stable triplex formation between the triplex-forming oligonucleotide (TFO) and the target double-stranded DNA (dsDNA) is fundamental to the antigene strategy. However, there are two major drawbacks in triplex formation by a natural TFO: low stability of the triplex and limitations of the target DNA sequence. To overcome these problems, we have developed various bridged nucleic acids (BNAs), and found that the 2',4'-BNA modification of oligonucleotides strongly promotes parallel motif triplex formation under physiological conditions. Some nucleobase analogues to extend the target DNA sequence were designed, synthesized, and introduced into the 2',4'-BNA structure. The obtained 2',4'-BNA derivatives with unnatural nucleobases effectively recognized a pyrimidine-purine interruption in the target dsDNA. Some other examples of nucleic acid analogues for stable triplex formation and extension of the target DNA sequence are also summarized.  相似文献   

11.
In recent years, fluorescently labeled oligonucleotides have become a widely used tool in diagnostics, DNA sequencing, and nanotechnology. The recently developed (phenylethynyl)pyrenes are attractive dyes for nucleic acid labeling, with the advantages of long-wave emission relative to the parent pyrene, high fluorescence quantum yields, and the ability to form excimers. Herein, the synthesis of six (phenylethynyl)pyrene-functionalized locked nucleic acid (LNA) monomers M(1)-M(6) and their incorporation into DNA oligomers is described. Multilabeled duplexes display higher thermal stabilities than singly modified analogues. An increase in the number of phenylethynyl substituents attached to the pyrene results in decreased binding affinity towards complementary DNA and RNA and remarkable bathochromic shifts of absorption/emission maxima relative to the parent pyrene fluorochrome. This bathochromic shift leads to the bright fluorescence colors of the probes, which differ drastically from the blue emission of unsubstituted pyrene. The formation of intra- and interstrand excimers was observed for duplexes that have monomers M(1)-M(6) in both complementary strands and in numerous single-stranded probes. If more phenylethynyl groups are inserted, the detected excimer signals become more intense. In addition, (phenylethynyl)pyrenecarbonyl-LNA monomers M(4), M(5), and M(6) proved highly useful for the detection of single mismatches in DNA/RNA targets.  相似文献   

12.
Li Z  Li K  Tong S 《Talanta》2000,51(1):63-70
The large particle light scattering technique was first developed as a sensitive and convenient analysis method for microdetermination of nucleic acids by using a common spectrofluorometer. In 0.1 mol l(-1) HCl, H(2)SO(4), or HNO(3) solution, the nucleic acids can aggregate to form large particles whose dimensions are comparable to the wavelength of UV-Vis light. The large particles can result in very strong light scattering which is well proportional to the concentration of nucleic acids in the range of 0.06-100.0 mug ml(-1) for calf thymus DNA, 0.05-60.0 mug ml(-1) for fish sperm DNA, and 0.6-90.0 mug ml(-1) for yeast RNA. The detection limits (3sigma) are 18.0 ng ml(-1) for calf thymus DNA, 16.0 ng ml(-1) for fish sperm DNA, and 57.6 ng ml(-1) for yeast RNA, respectively. Six synthetic samples were determined with satisfactory results.  相似文献   

13.
Screening of combinatorial libraries by spatial arraying strategies requires library members to be solid-phase immobilized. However, for nucleic acid ligands that bind via intercalation, immobilization may inhibit binding if the tethering functionality is present at the edge of the heterocyle that approaches the duplex during the binding reaction. We report here a method for immobilizing peptide-acridine conjugates (PACs) via either their C- or their N-terminus, corresponding to functionalization at either the 4- or the 9-position of acridine, respectively, and for assaying the nucleic acid binding properties of the resulting resins. We find that both the amino acid sequence of the PAC as well as its point of attachment to the solid support are important in determining affinity for duplex nucleic acids. These results have implications for the design of future on-bead and microarray-based selections and in understanding the nucleic acid binding of functionalized intercalators.  相似文献   

14.
The Nucleic Acid Package (NUPACK) is a growing software suite for the analysis and design of nucleic acid systems. The NUPACK web server ( http://www.nupack.org ) currently enables:
  • Analysis: thermodynamic analysis of dilute solutions of interacting nucleic acid strands.
  • Design: sequence design for complexes of nucleic acid strands intended to adopt a target secondary structure at equilibrium.
  • Utilities: evaluation, display, and annotation of equilibrium properties of a complex of nucleic acid strands.
NUPACK algorithms are formulated in terms of nucleic acid secondary structure. In most cases, pseudoknots are excluded from the structural ensemble. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

15.
Nucleic acid biosensors have a growing number of applications in genetics and biomedicine. This contribution is a critical review of the current state of the art concerning the use of nucleic acid analogues, in particular peptide nucleic acids (PNA) and locked nucleic acids (LNA), for the development of high-performance affinity biosensors. Both PNA and LNA have outstanding affinity for natural nucleic acids, and the destabilizing effect of base mismatches in PNA- or LNA-containing heterodimers is much higher than in double-stranded DNA or RNA. Therefore, PNA- and LNA-based biosensors have unprecedented sensitivity and specificity, with special applicability in DNA genotyping. Herein, the most relevant PNA- and LNA-based biosensors are presented, and their advantages and their current limitations are discussed. Some of the reviewed technology, while promising, still needs to bridge the gap between experimental status and the harder reality of biotechnological or biomedical applications.  相似文献   

16.
Using the oxidation reaction between hydrogen peroxide and dl-tyrosine as fluorescence indication, the evident tuning effect of nucleic acids on catalytic activity of mimetic enzyme iron (III) tetracarboxy phthalocyanine (FeC4Pc) in the presence of poly-lysine was observed and studied. The oxidation reaction between hydrogen peroxide and dl-tyrosine with FeC4Pc as catalyst gave an intensively fluorescent compound, which has an excitation wavelength of 325 nm and an emission wavelength of 418 nm. The fluorescence was quenched by a proper concentration of poly-lysine due to its association with FeC4Pc and consequently the descent of the catalytic activity of FeC4Pc, but recovered by addition of nucleic acids. Under optimal conditions, the recovered fluorescence is proportional to the concentration of nucleic acids. Based on the fact, a kinetic fluorescent method was developed for the determination of nucleic acids. The calibration graphs are linear over the range 10-2000 ng/mL both for fish sperm DNA (FS DNA) and calf thymus DNA (CT DNA). The corresponding detection limits are 1.04 ng/mL for FS DNA and 1.18 ng/mL for CT DNA, respectively. Four synthetic and three real nucleic acid samples were determined with satisfactory results.  相似文献   

17.
The interactions of nucleic acids and cationic surfactants (cetylpyridine bromide (CPB) and cetyltrimethylammonium bromide (CTMAB)) in aqueous solution have been studied using the techniques of resonance light scattering (RLS) spectroscopy, the absorption spectroscopy, zeta potential assay and NMR assignment measurement. It is considered that CPB or CTMAB can assemble on the surface of nucleic acid via electrostatic and hydrophobic forces, which results in the formation of large associate of nucleic acid-cationic surfactant and RLS enhancement of nucleic acid. Besides these forces, the pi-pi stacking force between CPB and nucleic acid also exists in the associate. In comparison with CTMAB, CPB has larger enhancement on RLS of nucleic acid, which is attributed to that the enhancement of the former is only due to the absorption of the bases of nucleic acid, while the enhancement of the latter is own to the synergetic resonance caused by the absorption of both bases of nucleic acid and the pyridyl in CPB. These results have important implication for understanding the influence of surfactants on nucleic acid functionality in life science.  相似文献   

18.
Nucleic acids are able to adopt a plethora of structures, many of which are of interest in therapeutics, bio- or nanotechnology. However, structural and biochemical stability is a major concern which has been addressed by incorporating a range of modifications and nucleoside derivatives. This review summarizes the use of locked nucleic acid (LNA) and un-locked nucleic acid (UNA) monomers in functional nucleic acids such as aptamers, ribozymes, and DNAzymes.  相似文献   

19.
20.
Recent analytical innovations for nucleic acid detection have revolutionized the biological sciences. Single nucleic acid sequence detection methods have been expanded to incorporate multiplexed detection strategies. A variety of nucleic acid detection formats are now available that can address high throughput genomic interrogation. Many of these parallel detection platforms or arrays, employ fluorescence as the signaling method. Fluorescence-based assays offer many advantages, including increased sensitivity, safety and multiplexing capabilities, as well as the ability to measure multiple fluorescence properties. Multiplexed microarray platforms provide parallel detection capabilities capable of measuring thousands of simultaneous responses. This review will discuss both single target detection and microarray applications with a focus on gene expression and pathogenic microorganism (PM) detection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号