首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
The interaction between carbon oxide and [Au20–nCun]q clusters (n = 0, 1, 19, 20 and q = 0, ±1) is studied by means of DFT/PBE in the scalar relativistic approximation. To establish the composition and structure of an adsorption site, isomers of bimetallic Au19Cu and AuCu19 particles with different positions of the heteroatom at an apex, edge, and face of the tetrahedral framework are considered. The optimized structures are used as the basis to determine the electronic properties of clusters (average bond energy per atom, difference of energies between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO), ionization potential, electron affinity energy). The calculated parameters shrink as the copper content in clusters grows. Among the uncharged models, the highest CO adsorption energy is typical of Au19Cu, the heteroatom of which lies at a cluster’s apex. The CO adsorption energy for cationic and anionic clusters grows in comparison to neutral clusters.  相似文献   

2.
The geometrical structures, relative electronic and magnetic properties of small AlnCo (1 ≤ n ≤ 9) clusters are systematically investigated within the framework of density functional theory at the BPW91 level. The single Co doping can dramatically affect the ground state geometries of the 1 Aln+1- clusters. At the same time, the resulting geometries show that the lowest energy AlnCo clusters prefer to be three dimensional structures. Here, the relative stabilities are investigated in terms of the calculated average binding energies, fragmentation energies, and second-order energy differences. Moreover, the result of the highest occupiedlowest unoccupied molecular orbital energy gaps indicates that Al6Co clusters have the highest chemical stability for AlnCo (1 ≤ n ≤ 9) clusters. Furthermore, the natural population analysis reveals that the charges in AlnCo clusters transfer from the Al frames to the Co atom. Additionally, the analyses of the local and total magnetic moments of the AlnCo clusters show that the magnetic effect mainly comes from the Co atom.  相似文献   

3.
Systematic investigations on lowest energy CO adsorbed neutral and ionic Rhn (n = 2–8) clusters in the gas phase are performed with all electron relativistic method using density functional theory within the generalized gradient approximation. Geometrical and electronic parameters are evaluated to understand the bonding nature as well as the binding interaction of CO on stable neutral and ionic rhodium clusters. Anionic adducts exhibit higher adsorption energy along with smaller Rh–C and larger C–O bond distances in comparison to neutral and cationic RhnCO (n = 2–8) clusters. Synergic bond formation is noticed between rhodium and carbon atom of CO molecule due to back-donation of electron from metal d-orbitals to π* orbital of CO in the case of anionic and some neutral clusters. Angular and Mülliken charge analysis along with electron density distribution suggest that anionic rhodium clusters form strong bond with carbon atom of CO than the neutral and cationic clusters.  相似文献   

4.
Adsorption of acetylene molecules by water clusters at T 230 K was studied by the method of molecular dynamics. Addition of already two C2H2 molecules to (H2O) n clusters (10 ≤ n ≤ 20) makes them thermodynamically unstable. With an increase in the acetylene concentration in the disperse aqueous system, the IR absorption by the cluster system in the frequency range 0 ≤ ω ≤ 1000 cm?1 increases. Depending on the number of C2H2 molecules per water cluster, the IR reflection by cluster systems can either increase or decrease. The power of the thermal radiation emitted by the clusters considerably increases after the adsorption of C2H2 molecules and grows with an increase in the acetylene concentration in the disperse aqueous system.  相似文献   

5.
Micro hydration structures of the sodium ion, [Na(H2O) n ]+, n = 1–12, were probed by density functional theory (DFT) at B3LYP/aug-cc-pVDZ level in both gaseous and aqueous phase. The predicted equilibrium sodium–oxygen distance of 0.240 nm at the present level of theory. The four-, five- and six-coordinated cluster can transform from each other at the ambient condition. The analysis of the successive water binding energy and natural charge population (NBO) on Na+ clearly shows that the influence of Na+ on the surrounding water molecules goes beyond the first hydration shell with the hydration number of 6. The Car-Parrinello molecular dynamic simulation shows that only the first hydration sphere can be found, and the hydration number of Na+ is 5.2 and the hydration distance (rNa–O) is 0.235 nm. All our simulations mentioned in the present paper show an excellent agreement with the diffraction result from X-ray scattering study.  相似文献   

6.
A series of new 3d metal complexes based on dimethyl pyridin-2-ylcarbamoylphosphoramidate (HL) was synthesized. The compounds with general formula M(HL)2Cl2·nH2O and M(L)2·nH2O (M=Co2+, Cu2+, Ni2+) were characterized by means of single-crystal X-ray analysis and IR spectroscopy. The organic ligands in all complexes are coordinated via oxygen atom of the carbonyl group and nitrogen atom of the heterocycle. The coordination environment of the central atoms is a distorted octahedron. The axial positions in the Co(II) and Ni(II) complexes with deprotonated ligands are occupied by water molecules. The Co(II) and Cu(II) complexes with phosphoryl ligands in a neutral form have different ligands in the axial positions: in the Co(II) complex, the positions are occupied by two water molecules, whereas in the Cu(II) complex, the positions are occupied by two chlorine anions. The structure of HL was experimentally and theoretically obtained by utilizing single-crystal X-ray analysis and DFT calculations. The computationally optimized geometric parameters for HL show a good agreement with the experimental results.  相似文献   

7.
The geometric structures, relative stabilities, magnetic properties of Mo-doped gold clusters Au n Mo(n = 1–10) have been investigated at the PBE1PBE/def2TZVP level of theory. The results show that molybdenum doping has a significant effect on the geometric structures and electronic properties of Au n Mo(n = 1–10) clusters. For the lowest energy structures of Au n Mo(n = 1–10), the two dimensional to three dimensional transition occurs at cluster size n ≥ 8, and their relative stabilities exhibit odd–even oscillation with the change of Au atom number. It is found that charge in corresponding Au n Mo clusters transfers from Mo atom to Au n host in the size range n = 1–7, whereas the charge in opposition direction in the size range n = 8–10. In addition, the magnetic properties of Au n Mo clusters are enhanced after doping single Mo atom into the corresponding gold clusters. Our results are valuable for the design of magnetic material.  相似文献   

8.
The free energy and entropy of the dissociation of HCl molecule into ions in water vapor, HCl(H2O) n + mH2O → H3O + (H2O) n+m -1Cl?, were calculated. The dependences of various parameters on the interionic distance at 273 K and various vapor pressures were obtained. A detailed model taking into account unpaired covalent-type interactions, polarization interactions, charge transfer effect, and hydrogen bonds was applied. The numerical values of the parameters were reconstructed from the experimental data on the free energy and enthalpy of the first reactions of addition of vapor molecules to ions, and also from the results of quantum-chemical calculations of the energy and geometry of locally stable configurations of clusters HCl(H2O) n . Despite lower internal energy of the dissociated state, the molecular form is absolutely stable in clusters of water molecules. The dissociated state is relatively stable. Accumulation of unrecombined ion pairs in clusters is possible with a decrease in the temperature to 200 K.  相似文献   

9.
Density functional calculations using B3LYP/6‐311G method have been carried out for small to medium‐sized lithium clusters (LiN, N = 2–30). The optimized geometries of neutral and singly charged clusters, their binding energies, ionization potential, electron affinity, chemical potential, softness, hardness, highest occupied molecular orbital and lowest unoccupied molecular orbital (HOMO–LUMO) gap, and static dipole polarizability have been investigated systematically. In addition, we study the distribution of partial charges in detail using natural population analysis (NPA) in small‐sized clusters (LiN, N = 2–10), both neutral and cationic, and demonstrate the correlation between symmetry and charge. Uniform distribution of charges in cationic clusters confirms them to be energetically more favorable than the neutral counterparts. Whenever possible, results have been compared with available data. An excellent agreement in every case supports new results as reliable predictions. A careful study of optimized geometries shows that Li9 is derivable from bulk Li structure, i.e., body centered cubic cell, and higher clusters have optimized shapes derived from this. Further, the turnover form two to three dimensional structure occurs at cluster size N = 6. The quantity α1/3 (α = polarizability) per atom is found to be broadly proportional to softness (per atom) as well as inverse ionization potential (per atom). The present work forms a sound basis for further study of large‐sized clusters as well as other atomic clusters. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012  相似文献   

10.
Understanding the charge transfer process between bioactive molecules and inorganic or organic molecules is significant as this interaction can be used to interpret bioactive molecule–receptor interactions. A comprehensive spectrophotometric study has been performed to explore the complexation chemistry of the amino acids, tyrosine, lysine and arginine, with iodine as σ acceptor. The molecular structure, spectroscopic characteristics and the interactive modes have been deduced from UV–Vis and IR spectra. The binding ratio of complexation has been determined to be 1:1 for iodine with the amino acids. The association constant (K), extinction coefficient (ε max), ionization potential (IP), energy of the charge transfer complex (E CT), resonance energy (R N ), dissociation energy (W) and standard Gibbs energy (ΔG°) have been computed. An in silico study has been carried out using GAMESS computations to understand the structural features. Highest occupied molecular orbital and lowest unoccupied molecular orbital calculations helped us in characterizing the chemical reactivity and kinetic stability of the molecules. A good consistency between experimental and computational results has been found.  相似文献   

11.
Positive and negative ion electrospray mass spectra obtained from 50 mM phosphoric acid solutions presented a large number of phosphoric acid clusters: [(H3PO4)n?+?zH] z+ or [(H3PO4)n – zH] z– , with n up to 200 and z up to 4 for positively charged clusters, and n up to 270 and z up to 7 for negatively charged cluster ions. Ion mobility experiments allowed very explicit separation of the different charge states. Because of the increased pressures involved in ion mobility experiments, dissociation to smaller clusters was observed both in the trap and transfer areas. Voltages along the ion path could be optimized so as to minimize this effect, which can be directly associated with the cleavage of hydrogen bonds. Having excluded the ion mobility times that resulted from dissociated ions, each cluster ion appeared at a single drift time. These drift times showed a linear progression with the number of phosphoric atoms for cluster ions of the same charge state. Cross section calculations were carried out with MOBCAL on DFT optimized geometries with different hydrogen locations and with three types of atomic charges. DFT geometry optimizations yielded roughly spherical structures. Our results for nitrogen gas interaction cross sections showed that values were dependent on the atomic charges definition used in the MOBCAL calculation. This pinpointed the necessity to define a clear theoretical framework before any comparative interpretations can be attempted with uncharacterized compounds.
Figure
?  相似文献   

12.
The performance of the extended solvent-contact model has been addressed in the SAMPL5 blind prediction challenge for distribution coefficient (LogD) of drug-like molecules with respect to the cyclohexane/water partitioning system. All the atomic parameters defined for 41 atom types in the solvation free energy function were optimized by operating a standard genetic algorithm with respect to water and cyclohexane solvents. In the parameterizations for cyclohexane, the experimental solvation free energy (ΔG sol ) data of 15 molecules for 1-octanol were combined with those of 77 molecules for cyclohexane to construct a training set because ΔG sol values of the former were unavailable for cyclohexane in publicly accessible databases. Using this hybrid training set, we established the LogD prediction model with the correlation coefficient (R), average error (AE), and root mean square error (RMSE) of 0.55, 1.53, and 3.03, respectively, for the comparison of experimental and computational results for 53 SAMPL5 molecules. The modest accuracy in LogD prediction could be attributed to the incomplete optimization of atomic solvation parameters for cyclohexane. With respect to 31 SAMPL5 molecules containing the atom types for which experimental reference data for ΔG sol were available for both water and cyclohexane, the accuracy in LogD prediction increased remarkably with the R, AE, and RMSE values of 0.82, 0.89, and 1.60, respectively. This significant enhancement in performance stemmed from the better optimization of atomic solvation parameters by limiting the element of training set to the molecules with experimental ΔG sol data for cyclohexane. Due to the simplicity in model building and to low computational cost for parameterizations, the extended solvent-contact model is anticipated to serve as a valuable computational tool for LogD prediction upon the enrichment of experimental ΔG sol data for organic solvents.  相似文献   

13.
The vaporization of the NaI-PrI3 quasi-binary system was studied by high-temperature mass spectrometry over the whole concentration range. At 623–994 K, saturated vapor contained not only (NaI) n and (PrI3) n molecules (n = 1, 2) and Na+(NaI) n (n = 0–4) and I?(PrI3) n (n = 1–2) ions but also mixed molecular and ionic associates recorded for the first time (NaPrI4, Na2PrI5, NaPrI 3 + , Na2PrI 4 + , Na3PrI 5 + , Na4PrI 6 + , NaPrI 5 ? , and NaPr2I 8 ? ). The partial vapor pressures of molecules were calculated, and the equilibrium constants of the dissociation of neutral and charged associates were measured. The enthalpies of molecular and ion-molecular reactions were determined, and the enthalpies of formation of gaseous molecules and ions were obtained.  相似文献   

14.
We report on studies of multiple ionization and fragmentation of free Hgn (n ≤ 80) clusters in the femtosecond time domain at wavelengths ranging from 255 nm to 800 nm. After excitation by single laser pulses of an intensity of 5 * 1011 W/cm2 we observe prompt formation of multiply charged Hgn clusters. The Hgn cluster size distribution observed up to n ≈ 80 shows in additon to singly charged also doubly and triply charged clusters with a surprisingly high amount of doubly charged clusters. The measured cluster size distribution is nearly independent of laser wavelengths. For higher laser intensities (2 * 1012 W/cm2) we observe multiply charged mercury atoms up to Hg5+. At 1013 W/cm2 molecules and clusters eventually disappear due to Coulomb explosion and complete Fragmentation. Only atomic ions, singly and multiply charged, with high kinetic energies are then observed.  相似文献   

15.
The effect of solvation on the conformation of acetylene has been studied by adding one water molecule at a time. Quantum chemical calculations of the H+(C2H2)(H2O)n (n=1-5) clusters indicate that the H2O molecules prefer to form the OH…π interaction rather than the CH…O interaction. This solvation motif is different from that of neutral (C2H2)(H2O)n (n=1-4) clusters, in which the H2O molecules prefer to form the CH…O and OH…C H-bonds. For the H+(C2H2)(H2O)n cationic clusters, the first solvation shell consists of one ring structure with two OH…π H-bonds and three water molecules, which is completed at n=4. Simulated infrared spectra reveal that vibrational frequencies of OH…π H-bonded O-H stretching afford a sensitive probe for exploring the solvation of acetylene by protonated water molecules. Infrared spectra of the H+(C2H2)(H2O)n(n=1-5) clusters could be readily measured by the infrared photodissociation technique and thus provide useful information for the understanding of solvation processes.  相似文献   

16.
IR absorption, reflection, and emission spectra of aqueous disperse systems that absorbed molecules of nitric oxide are calculated. In order to reveal the effect of the absorption of NO molecules on the dielectric properties of water clusters with different sizes, clusters are divided into two groups. The first group consists of clusters containing two to ten water molecules, while the second group contains from 11 to 20 H2O molecules. Six systems of clusters are studied, e.g., (H2O) n , and (NO)2(H2O) n with 2 ≤ n ≤ 10 and 11 ≤ n ≤ 20 ranges. An increase in the cluster size in each group leads to the amplification of absorption, reflection, and the power of emission of IR radiation. The doubling of the NO concentration in the disperse system results in weak changes in the absorption of IR radiation, reduces the reflection and decreases the number of electrons participating in the interaction with external IR radiation, as well as significantly lowers the power of thermal radiation emitted by the system.  相似文献   

17.
《Chemical physics letters》1987,133(4):303-306
The failure of theoretical approaches to account for the dependence of the electric mobilities of small cations on ion size and charge has led us to investigate the possible influence of quantum-mechanical effects on electric mobilities. Ab initio SCF calculations show that charge transfer in complexes of the type (M—OH2)n+ shows a similar trend with atomic number as that found for ionic conductances in aqueous solutions. This match can be interpreted in terms of the energies involved in the bonding of water molecules in the solvation sheath.  相似文献   

18.
The structure, energetics, and physical properties, including rotational constants, characteristic vibrational temperatures, dipole moment, static polarizability, HOMO-LUMO gap, formation enthalpy and collision diameter of different isomeric forms of atomic Al n H m and B n H m clusters with n = 1..4 and all feasible m numbers are studied within the density functional theory framework. The search of isomer structures has been accomplished using multistep hierarchical algorithm. Temperature dependences of thermodynamic functions (enthalpy, entropy and specific heat capacity) have been calculated both for the individual isomers and for the ensemble of isomers with equilibrium composition for each class of clusters, taking into account the anharmonicity of cluster vibrations and the contribution of excited electronic states. The prospects of the application of small atomic Al n H m and B n H m clusters as the components of energetic and hydrogen storage materials are also discussed.  相似文献   

19.
We have studied the structure and geometry of neutral and charged atomic clusters consisting of Ga and As atoms via ab initio Hartree–Fock (HF) and second‐order Møller–Plesset methods. The GamAsn cluster with mn composition prefers a nontetrahedral geometry in the charge neutral (q=0) state. These clusters tend to be stable in tetrahedral geometry when appropriately charged. The GamAsn cluster with m=n composition (1:1 ratio of Ga to As atoms) tends to be stable in a tetrahedral geometry in the charge neutral (q=0) state. With increasing size of the cluster, the geometry of GanAsn cluster approaches the zinc‐belende‐type crystalline structure. © 2000 John Wiley & Sons, Inc. Int J Quant Chem 77: 563–573, 2000  相似文献   

20.
The magnetic property and electronic properties such as binding energy, charge transfer, ionization potential and electron affinity of the Ni n–1Ge (n = 13–23) neutral and ionic clusters have been studied using the density functional theory calculations with the PBE exchange-correlation energy functional. The calculated total magnetic moments decrease with the addition of Ge atom. Both the calculated ionization potential and electron affinity exhibit an oscillating behavior as the cluster size increases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号