首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intervalence absorption bands appearing in the diagnostic near-IR region are consistently observed in the electronic spectra of mixed-valence systems containing a pair of aromatic redox centers (Ar(*)(+)/Ar) that are connected by two basically different types of molecular bridges. The through-space pathway for intramolecular electron transfer is dictated by an o-xylylene bridge in the mixed-valence cation radical 3(*)(+) with Ar = 2,5-dimethoxy-p-tolyl (T), in which conformational mobility allows the proximal syn disposition of planar T(*)(+)/T redox centers. Four independent experimental probes indicate the large through-space electronic interaction between such cofacial Ar(*)(+)/Ar redox centers from the measurements of (a) sizable potential splitting in the cyclic voltammogram, (b) quinonoidal distortion of T(*)(+)/T centers by X-ray crystallography, (c) "doubling" of the ESR hyperfine splittings, and (d) a pronounced intervalence charge-resonance band. The through (br)-bond pathway for intramolecular electron transfer is enforced in the mixed-valence cation radical 2a(*)(+) by the p-phenylene bridge which provides the structurally inflexible and linear connection between Ar(*)(+)/Ar redox centers. The direct comparison of intramolecular rates of electron transfer (k(ET)) between identical T(*)(+)/T centers in 3(*)(+) and 2a(*)(+)( )()indicates that through-space and through-bond mechanisms are equally effective, despite widely different separations between their redox centers. The same picture obtains for 3(*)(+) and 2a(*)(+)( )()from theoretical computations of the first-order rate constants for intramolecular electron transfer from Marcus-Hush theory using the electronic coupling elements evaluated from the diagnostic intervalence (charge-transfer) transitions. Such a strong coherence between theory and experiment also applies to the mixed-valence cation radical 7(*)(+), in which the aromatic redox S center is sterically encumbered by annulation.  相似文献   

2.
The spontaneous assembly of aromatic cation radicals (D(+?)) with their neutral counterpart (D) affords dimer cation radicals (D(2)(+?)). The intermolecular dimeric cation radicals are readily characterized by the appearance of an intervalence charge-resonance transition in the NIR region of their electronic spectra and by ESR spectroscopy. The X-ray crystal structure analysis and DFT calculations of a representative dimer cation radical (i.e., the octamethylbiphenylene dimer cation radical) have established that a hole (or single positive charge) is completely delocalized over both aromatic moieties. The energetics and the geometrical considerations for the formation of dimer cation radicals is deliberated with the aid of a series of cyclophane-like bichromophoric donors with drastically varied interplanar angles between the cofacially arranged aryl moieties. X-ray crystallography of a number of mixed-valence cation radicals derived from monochromophoric benzenoid donors established that they generally assemble in 1D stacks in the solid state. However, the use of polychromophoric intervalence cation radicals, where a single charge is effectively delocalized among all of the chromophores, can lead to higher-order assemblies with potential applications in long-range charge transport. As a proof of concept, we show that a single charge in the cation radical of a triptycene derivative is evenly distributed on all three benzenoid rings and this triptycene cation radical forms a 2D electronically coupled assembly, as established by X-ray crystallography.  相似文献   

3.
Intermolecular electron transfer (ET) between the free phenothiazine donor (PH) and its cation radical (PH*+) proceeds via the [1:1] precursor complex (PH)(2)*+ which is transiently observed for the first time by its diagnostic (charge-resonance) absorption band in the near-IR region. Similar intervalence (optical) transitions are also observed in mixed-valence cation radicals with the generic representation: P(br)P*+, in which two phenothiazine redox centers are interlinked by p-phenylene, o-xylylene, and o-phenylene (br) bridges. Mulliken-Hush analysis of the intervalence (charge-resonance) bands afford reliable values of the electronic coupling element H(IV) based on the separation parameters for (P/P*+) centers estimated from some X-ray structures of the intermolecular (PH)(2)*+ and the intramolecular P(br)P*+ systems. The values of H(IV), together with the reorganization energies lambda derived from the intervalence transitions, yield activation barriers DeltaG(ET)() and first-order rate constants k(ET) for electron-transfer based on the Marcus-Hush (two-state) formalism. Such theoretically based values of the intrinsic barrier and ET rate constants agree with the experimental activation barrier (E(a)) and the self-exchange rate constant (k(SE)) independently determined by ESR line broadening measurements. This convergence validates the use of the two-state model to adequately evaluate the critical electronic coupling elements between (P/P*+) redox centers in both (a) intermolecular ET via the precursor complex and (b) intramolecular ET within bridged mixed-valence cation radicals. Important to intermolecular ET mechanism is the intervention of the strongly coupled precursor complex since it leads to electron-transfer rates of self-exchange that are 2 orders of magnitude faster (and activation barrier that is substantially lower) than otherwise predicted solely on the basis of Marcus reorganization energy.  相似文献   

4.
A molecular rectangle of the form ([Re(CO)(3)](2)BiBzIm)(2)-mu,mu'-(LL)(2), where BiBzIm is 2,2'-bisbenzimidazolate and LL are cofacially aligned [5,15-bis(4-ethynylpyridyl)-10,20-bis(n-hexyl)-porphyrinato]zinc ligands, has been examined via electrochemical, spectroelectrochemical, and electronic Stark effect methods. The rectangle displays three electrochemically accessible reductions assigned as LL based. The singly reduced rectangles are part of an unusual class of mixed-valence complexes where cofacial ligands, in this case porphyrins, comprise the degenerate redox centers. Absorption spectra for the singly reduced rectangle show two intense and narrow absorption bands in the near-infrared (NIR) region; the lower energy band is assigned as an intervalence transition. Time-dependent density functional theory electronic structure calculations support the assignment. Curiously, the transition displays a non-Marcus-type solvent dependence. NIR region electroabsorbance measurements of the singly reduced rectangle reveal a small but readily measurable dipole moment change of 0.56 +/- 0.05 eA. On the basis of spectroelectrochemical and electroabsorption measurements, the singly reduced rectangle is assigned as a borderline class II/class III mixed-valence species.  相似文献   

5.
The synthesis and characterization of 10 cyano-bridged trinuclear mixed-valence compounds of the form [(NH3)5M-NC-FeII(CN)4-CN-M'(NH3)5]n+ (M = RuIII, OsIII, CrIII, or PtIV; n = 2, 3, or 4) is reported. The electronic spectra of these supramolecular compounds exhibit a single intervalent (IT) absorption band for each nondegenerate Fe-->M/M' transition. The redox potential of the Fe(II) center is shifted more positive with the addition of each coordinated metal complex, while the redox potentials of the pendant metals vary only slightly from their dinuclear counterparts. As a result, the Fe-->M IT bands are blue-shifted from those in the corresponding dinuclear mixed-valence compounds. The energies of these IT bands show a linear correlation with the ground-state thermodynamic driving force, as predicted by classical electron transfer theory. Estimates of the degree of electronic coupling (Hab) between the metal centers using a theoretical analysis of the IT band shapes indicate that most of these values are similar to those for the corresponding dinuclear species. Notable exceptions occur for the Fe-->M IT transitions in Os-Fe-M (M = Cr or Pt). The enhanced electronic coupling in these two species can be explained as a result of excited state mixing between electron transfer and/or ligand-based charge transfer states and an intensity-borrowing mechanism. Additionally, the possibility of electronic coupling between the remote metal centers in the Ru-Fe-Ru species is discussed in order to explain the observation of two closely spaced redox waves for the degenerate Ru(III) acceptors.  相似文献   

6.
Ligand radicals from salen complexes are unique mixed-valence compounds in which a phenoxyl radical is electronically linked to a remote phenolate via a neighboring redox-active metal ion, providing an opportunity to study electron transfer from a phenolate to a phenoxyl radical mediated by a redox-active metal ion as a bridge. We herein synthesize one-electron-oxidized products from electronically diverse manganese(III) salen complexes in which the locus of oxidation is shown to be ligand-centered, not metal-centered, affording manganese(III)-phenoxyl radical species. The key point in the present study is an unambiguous assignment of intervalence charge transfer bands by using nonsymmetrical salen complexes, which enables us to obtain otherwise inaccessible insight into the mixed-valence property. A d(4) high-spin manganese(III) ion forms a Robin-Day class II mixed-valence system, in which electron transfer is occurring between the localized phenoxyl radical and the phenolate. This is in clear contrast to a d(8) low-spin nickel(II) ion with the same salen ligand, which induces a delocalized radical (Robin-Day class III) over the two phenolate rings, as previously reported by others. The present findings point to a fascinating possibility that electron transfer could be drastically modulated by exchanging the metal ion that bridges the two redox centers.  相似文献   

7.
The dinuclear complex [(tpy)RuII(PCP-PCP)RuII(tpy)]Cl2 (bridging PCP-PCP = 3,3',5,5'-tetrakis(diphenylphosphinomethyl)biphenyl, [C6H2(CH2PPh2)2-3,5]22-) was prepared via a transcyclometalation reaction of the bis-pincer ligand [PC(H)P-PC(H)P] and the Ru(II) precursor [Ru(NCN)(tpy)]Cl (NCN = [C6H3(CH2NMe2)2-2,6]-) followed by a reaction with 2,2':6',2' '-terpyridine (tpy). Electrochemical and spectroscopic properties of [(tpy)RuII(PCP-PCP)RuII(tpy)]Cl2 are compared with those of the closely related [(tpy)RuII(NCN-NCN)RuII(tpy)](PF6)2 (NCN-NCN = [C6H2(CH2NMe2)2-3,5]22-) obtained by two-electron reduction of [(tpy)RuIII(NCN-NCN)RuIII(tpy)](PF6)4. The molecular structure of the latter complex has been determined by single-crystal X-ray structure determination. One-electron reduction of [(tpy)RuIII(NCN-NCN)RuIII(tpy)](PF6)4 and one-electron oxidation of [(tpy)RuII(PCP-PCP)RuII(tpy)]Cl2 yielded the mixed-valence species [(tpy)RuIII(NCN-NCN)RuII(tpy)]3+ and [(tpy)RuIII(PCP-PCP)RuII(tpy)]3+, respectively. The comproportionation equilibrium constants Kc (900 and 748 for [(tpy)RuIII(NCN-NCN)RuIII(tpy)]4+ and [(tpy)RuII(PCP-PCP)RuII(tpy)]2+, respectively) determined from cyclic voltammetric data reveal comparable stability of the [RuIII-RuII] state of both complexes. Spectroelectrochemical measurements and near-infrared (NIR) spectroscopy were employed to further characterize the different redox states with special focus on the mixed-valence species and their NIR bands. Analysis of these bands in the framework of Hush theory indicates that the mixed-valence complexes [(tpy)RuIII(PCP-PCP)RuII(tpy)]3+ and [(tpy)RuIII(NCN-NCN)RuII(tpy)]3+ belong to strongly coupled borderline Class II/Class III and intrinsically coupled Class III systems, respectively. Preliminary DFT calculations suggest that extensive delocalization of the spin density over the metal centers and the bridging ligand exists. TD-DFT calculations then suggested a substantial MLCT character of the NIR electronic transitions. The results obtained in this study point to a decreased metal-metal electronic interaction accommodated by the double-cyclometalated bis-pincer bridge when strong sigma-donor NMe2 groups are replaced by weak sigma-donor, pi-acceptor PPh2 groups.  相似文献   

8.
The dinuclear complex [{Ru(CN)(4)}(2)(μ-bppz)](4-) shows a strongly solvent-dependent metal-metal electronic interaction which allows the mixed-valence state to be switched from class 2 to class 3 by changing solvent from water to CH(2)Cl(2). In CH(2)Cl(2) the separation between the successive Ru(ii)/Ru(iii) redox couples is 350 mV and the IVCT band (from the UV/Vis/NIR spectroelectrochemistry) is characteristic of a borderline class II/III or class III mixed valence state. In water, the redox separation is only 110 mV and the much broader IVCT transition is characteristic of a class II mixed-valence state. This is consistent with the observation that raising and lowering the energy of the d(π) orbitals in CH(2)Cl(2) or water, respectively, will decrease or increase the energy gap to the LUMO of the bppz bridging ligand, which provides the delocalisation pathway via electron-transfer. IR spectroelectrochemistry could only be carried out successfully in CH(2)Cl(2) and revealed class III mixed-valence behaviour on the fast IR timescale. In contrast to this, time-resolved IR spectroscopy showed that the MLCT excited state, which is formulated as Ru(III)(bppz˙(-))Ru(II) and can therefore be considered as a mixed-valence Ru(ii)/Ru(iii) complex with an intermediate bridging radical anion ligand, is localised on the IR timescale with spectroscopically distinct Ru(ii) and Ru(iii) termini. This is because the necessary electron-transfer via the bppz ligand is more difficult because of the additional electron on bppz˙(-) which raises the orbital through which electron exchange occurs in energy. DFT calculations reproduce the electronic spectra of the complex in all three Ru(ii)/Ru(ii), Ru(ii)/Ru(iii) and Ru(iii)/Ru(iii) calculations in both water and CH(2)Cl(2) well as long as an explicit allowance is made for the presence of water molecules hydrogen-bonded to the cyanides in the model used. They also reproduce the excited-state IR spectra of both [Ru(CN)(4)(μ-bppz)](2-) and [{Ru(CN)(4)}(2)(μ-bppz)](4-) very well in both solvents. The reorganization of the water solvent shell indicates a possible dynamical reason for the longer life time of the triplet state in water compared to CH(2)Cl(2).  相似文献   

9.
The mononuclear complex [Ru(PPh(3))(2)(CO)(2)(L(1))] (1; H(2)L(1) = 7,8-dihydroxy-6-methoxycoumarin) and the dinuclear complexes [[Ru(PPh(3))(2)(CO)(2)](2)(L(2))][PF(6)] [[2][PF(6)]; H(3)L(2) = 9-phenyl-2,3,7-trihydroxy-6-fluorone] and [[Ru(PBu(3))(2)(CO)(2)](2)(L(3))] (3; H(4)L(3) = 1,2,3,5,6,7-hexahydroxyanthracene-9,10-dione) have been prepared; all complexes contain one or two trans,cis-[Ru(PR(3))(2)(CO)(2)] units, each connected to a chelating dioxolene-type ligand. In all cases the dioxolene ligands exhibit reversible redox activity, and accordingly the complexes were studied by electrochemistry and UV/vis/NIR, IR, and EPR spectroscopy in their accessible oxidation states. Oxidation of 1 to [1](+) generates a ligand-centered semiquinone radical with some metal character as shown by the IR and EPR spectra. Dinuclear complexes [2](+) and 3 show two reversible ligand-centered couples (one associated with each dioxolene terminus) which are separated by 690 and 440 mV, respectively. This indicates that the mixed-valence species [2](2+) has greater degree of electronic delocalization between the ligand termini than does [3](+), an observation which was supported by IR, EPR, and UV/vis/NIR spectroelectrochemistry. Both [2](2+) and [3](+) have a solution EPR spectrum consistent with full delocalization of the unpaired electron between the ligand termini on the EPR time scale (a quintet arising from equal coupling to all four (31)P nuclei); [3](+) is localized on the faster IR time scale (four CO vibrations rather than two, indicative of inequivalent [Ru(CO)(2)] units) whereas [2](2+) is fully delocalized (two CO vibrations). UV/vis/NIR spectroelectrochemistry revealed the presence of a narrow, low-energy (2695 nm) transition for [3](+) associated with the catecholate --> semiquinone intervalence transition. The narrowness and solvent-independence of this transition (characteristic of class III mixed-valence character) coupled with evidence for inequivalent [Ru(CO)(2)] termini in the mixed-valence state (characteristic of class II character) place this complex at the class II-III borderline, in contrast to [2](2+) which is clearly class III.  相似文献   

10.
A homologous series of three molecules containing thiophene, bithiophene, and terthiophene bridges between two redox-active tertiary amino groups was synthesized and explored. Charge delocalization in the one-electron-oxidized forms of these molecules was investigated by a combination of cyclic voltammetry, near-infrared optical absorption spectroscopy, and EPR spectroscopy. All three cation radicals can be described as organic mixed-valence species, and for all of them the experimental data are consistent with strong delocalization of the unpaired electron. Depending on what model is used for analysis of the optical absorption data, estimates for the electronic coupling matrix element (H(AB)) range from ~5000 to ~7000 cm(-1) for the shortest member of the homologous series. According to optical absorption and EPR spectroscopy, even the terthiophene radical appears to belong either to Robin-Day class III or to a category of radicals commonly denominated as borderline class II/class III systems. The finding of such a large extent of charge delocalization over up to three adjacent thiophene units is remarkable.  相似文献   

11.
Transient 1:1 precursor complexes for intermolecular self-exchange between various organic electron donors (D) and their paramagnetic cation radicals (D+*), as well as between different electron acceptors (A) paired with their anion radicals (A-*), are spectrally (UV-NIR) observed and structurally (X-ray) identified as the cofacial (pi-stacked) associates [D, D+*] and [A-*, A], respectively. Mulliken-Hush (two-state) analysis of their diagnostic intervalence bands affords the electronic coupling elements (HDA), which together with the Marcus reorganization energies (lambda) from the NIR spectral data are confirmed by molecular-orbital computations. The HDA values are found to be a sensitive function of the bulky substituents surrounding the redox centers. As a result, the steric modulation of the donor/acceptor separation (rDA) leads to distinctive electron-transfer rates between sterically hindered donors/acceptors and their more open (unsubstituted) parents. The latter is discussed in the context of a continuous series of outer- and inner-sphere mechanisms for organic electron-transfer processes in a manner originally formulated by Taube and co-workers for inorganic (coordination) donor/acceptor dyads-with conciliatory attention paid to traditional organic versus inorganic concepts.  相似文献   

12.
In the Robin and Day classification, mixed-valence systems are characterized as Class I, II or III depending on the strength of the electronic interaction between the oxidized and reduced sites, ranging from essentially zero (Class I), to moderate (Class II), to very strong electronic coupling (Class III). The properties of Class I systems are essentially those of the separate sites. Class II systems possess new optical and electronic properties in addition to those of the separate sites. However, the interaction between the sites is sufficiently weak that Class II systems are valence trapped or charge localized and can the be described by a double-well potential. In Class III systems the interaction of the donor and acceptor sites is so great that two separate minima are no longer discernible and the energy surface features a single minimum. The electron is delocalized and the system has its own unique properties. The Robin and Day classification has enjoyed considerable success and most of the redox systems studied to date are readily assigned to Class II. However the situation becomes much more complicated when the system shows borderline Class II/III behavior. Such "almost delocalized" mixed-valence systems are difficult to characterize. In this article spectral band shapes and intensities are calculated utilizing increasingly complex models including two to four states. Free-energy surfaces are constructed for harmonic diabetic surfaces and characterized as a function of increasing electronic coupling to simulate the Class II to III transition. The properties of the charge-transfer absorption bands predicted for borderline mixed-valence systems are compared with experimental data. The treatment is restricted to symmetrical (delta G0 = 0) systems.  相似文献   

13.
14.
Reaction of [Ru(acac)(2)(CH(3)CN)(2)] with 3,6-bis(3,5-dimethylpyrazol-1-yl)-1,4-dihydro-1,2,4,5-tetrazine (H(2)L) results in formation of an unexpected dinuclear complex [(acac)(2)Ru(III)(L(1))Ru(III)(acac)(2)] (1) in which the bridging ligand [L(1)](2)(-) contains an (-)HN[bond]C[double bond]N[bond]N[double bond]C[bond]NH(-) unit arising from two-electron reduction of the 1,4-dihydro-1,2,4,5-tetrazine component of H(2)L. The crystal structure of complex 1 confirms the oxidation assignment of the metal ions as Ru(III) and clearly shows the consequent arrangement of double and single bonds in the bridging ligand, which acts as a bis-bidentate chelate having two pyrazolyl/amido chelating sites. Cyclic voltammetry of the complex shows the presence of four reversible one-electron redox couples, assigned as two Ru(III)/Ru(IV) couples (oxidations with respect to the starting material) and two Ru(II)/Ru(III) couples (reductions with respect to the starting material). The separation between the two Ru(III)/Ru(IV) couples (Delta E(1/2) = 700 mV) is much larger than that between the two Ru(II)/Ru(III) couples (Delta E(1/2) = 350 mV) across the same bridging pathway, because of the better ability of the dianionic bridging ligand to delocalize an added hole (in the oxidized mixed-valence state) than an added electron (in the reduced mixed-valence state), implying some ligand-centered character for the oxidations. UV-vis-NIR spectroelectrochemical measurements were performed in all five oxidation states; the Ru(II)-Ru(III) mixed-valence state of [1](-) has a strong IVCT transition at 2360 nm whose parameters give an electronic coupling constant of V(ab) approximately 1100 cm(-1), characteristic of a strongly interacting but localized (class II) mixed-valence state. In the Ru(III)-Ru(IV) mixed-valence state [1](+), no low-energy IVCT could be detected despite the strong electronic interaction, possibly because it is in the visible region and obscured by LMCT bands.  相似文献   

15.
Functionalised diferrocenyl-1-phenyl-1H-pyrroles were synthesised using Negishi C,C cross-coupling reactions. The influence of different substituents at the phenyl moiety on the electronic interaction was studied using electrochemistry (cyclic and square-wave voltammetry) and spectro-electrochemistry (in situ UV/Vis-NIR spectroscopy). The ferrocenyl moieties gave rise to two sequential, reversible redox processes in each of the diferrocenyl-1-phenyl-1H-pyrroles. The observed ΔE(1/2) values (ΔE(1/2) = difference between first and second oxidation) range between 420 and 480 mV. A linear relationship between the Hammett constants σ of the substituents and the separation of the redox potentials exists. The NIR measurements confirm electronic communication between the iron centers as intervalence charge transfer (IVCT) absorptions were observed in the corresponding mixed-valent monocationic species. All compounds were classified as class II systems according to Robin and Day (M. B. Robin and P. Day, Adv. Inorg. Chem., 1967, 10, 247-423). The oscillator strength of the charge transfer transition highly depends on the electron donating or electron withdrawing character of the phenyl substituents. This enables direct tuning of the intermetallic communication by simple modification of the molecule's functional group. Hence, this series of molecules may be regarded as model compounds for single molecule transistors.  相似文献   

16.
In this study, the acid-base properties of the adenine cation radical are investigated by means of experiment and theory. Adenine cation radical (A*(+)) is produced by one-electron oxidation of dAdo and of the stacked DNA-oligomer (dA)6 by Cl2*(-) in aqueous glass (7.5 M LiCl in H2O and in D2O) and investigated by ESR spectroscopy. Theoretical calculations and deuterium substitution at C8-H and N6-H in dAdo aid in our assignments of structure. We find the pKa value of A*(+) in this system to be ca. 8 at 150 K in seeming contradiction to the accepted value of < or = 1 at ambient temperature. However, upon thermal annealing to > or = 160 K, complete deprotonation of A*(+) occurs in dAdo in these glassy systems even at pH ca. 3. A*(+) found in (dA)6 at 150 K also deprotonates on thermal annealing. The stability of A*(+) at 150 K in these systems is attributed to charge delocalization between stacked bases. Theoretical calculations at various levels (DFT B3LYP/6-31G*, MPWB95, and HF-MP2) predict binding energies for the adenine stacked dimer cation radical of 12 to 16 kcal/mol. Further DFT B3LYP/6-31G* calculations predict that, in aqueous solution, monomeric A*(+) should deprotonate spontaneously (a predicted pKa of ca. -0.3 for A*(+)). However, the charge resonance stabilized dimer AA*(+) is predicted to result in a significant barrier to deprotonation and a calculated pKa of ca. 7 for the AA*(+) dimer which is 7 pH units higher than the monomer. These theoretical and experimental results suggest that A*(+) isolated in solution and A*(+) in adenine stacks have highly differing acid-base properties resulting from the stabilization induced by hole delocalization within adenine stacks.  相似文献   

17.
The ligand-centered mixed-valence (LCMV) properties of two supramolecular complexes are reported: triangular prisms of the form ([Re(CO)3]2X)3-mu,mu',mu' '-[tPyTz]2, where X is 2,2'-bisbenzimidazolate (1) or a pair of benzylthiols (2), and tPyTz is tri-(4-pyridyl)-1,3,5-triazine. Cyclic voltammetry demonstrates that the redox-accessible bridging ligands, tPyTz, are reduced in sequential, one-electron reactions. The singly reduced prisms, which represent an unusual type of mixed-valence compound in which the tPyTz ligands themselves are the redox centers, show intense, broad intervalance transfer (IT) bands in the NIR, consistent with highly coupled MV species. Electroabsorption (Stark spectroscopy) measurements reveal small dipole moment changes associated with intervalence excitation (|Deltamu12| = 0.30 +/- 0.02 eA for 1- and 0.48 +/- 0.02 eA for 2-), as well as noncollinear transition dipole moment (mu12) and dipole moment change vectors (zeta approximately 45 degrees ). DFT electronic structure calculations support this unusual result, along with a through-space electronic interaction mechanism. The neutral complexes (D3h symmetry) possess doubly degenerate, but spatially distinct, LUMO and LUMO+ orbitals. The orbital degeneracy of the tPyTz ligands is lifted in the MV forms, resulting in nonsymmetrical charge redistribution within the molecules upon on optical IT.  相似文献   

18.
The synthesis, electrochemical, and optical properties of homo- (5, 8, 9, and 12) and heterometallic (6, 7, 10, and 11) ferrocene-ruthenocene triads, are presented. Triferrocenyl derivatives 5 and 9 form the mixed-valence species 5*+ and 92+ by partial oxidation, which show intramolecular electro-transfer phenomena. Interestingly, spectroelectrochemical studies of compound 11, bearing two peripheral ferrocene units and one central ruthenocene moiety, revealed the presence of low-energy bands in the near-infrared (NIR) region, which indicate a rather unusual intramolecular charge-transfer between the ferrocene and ruthenocene units. The value of the electronic coupling parameter V(ab) = 150 cm(-1) calculated by deconvolution of the observed Fe(II)-Fe(III) IVCT transition in the mixed-valence compound 11*+, (d(Fe(II)-Fe(III)) = 18.617 A), indicates the ability of the ruthenocene system to promote a long distance intervalence electron-transfer. Moreover, the reported triads show selective cation sensing properties. Triads 5, 9, and 11 behave as dual redox and optical chemosensors for Zn(2+), Hg(2+), and Pb(2+). Their oxidation redox peaks are anodically shifted (up to 130 mV), and their low-energy (LE) bands of the absorption spectra are red-shifted (up to 115 nm) upon complexation with these metal cations. These changes in the absorption spectra are accompanied by dramatic color changes which allow the potential for "naked eye" detection.  相似文献   

19.
From the reactions between Mo2(O2CtBu)4 and each of terephthalic acid and 4,4'-azodibenzoic acid, the compounds [Mo2(O2CtBu)3]2(mu-O2CC6H4CO2) (1) and [Mo2(O2CtBu)3]2(mu-O2CC6H4N2C6H4CO2) (2) have been made and characterized by spectroscopic and electrochemical methods. Their electronic structures have been examined by computations employing density functional theory on model compounds where HCO2 substitutes for tBuCO2. On the basis of these studies, the two Mo2 units are shown to be only weakly coupled and the mixed-valence ions 1+ and 2+ to be valence-trapped and Class II and I, respectively, on the Robin-Day classification scheme for mixed-valence compounds. These results are compared to t2g6-Ru centers linked by 1,4-dicyanamidobenzene and azo-4,4'-diphenylcyanamido bridges for which the mixed-valence ions [Ru-bridge-Ru]5+ have been previously classified as fully delocalized, Class III [Crutchley et al. Inorg. Chem. 2001, 40, 1189; Inorg. Chem. 2004, 43, 1770], and on the basis of results described herein, it is proposed that the latter complex ion is more likely a mixed-valence organic radical where the bridge is oxidized and not the Ru(2+) centers.  相似文献   

20.
The preparation and characterization of a series of trinuclear mixed-valence cyano-bridged Co(III)-Fe(II)-Co(III) compounds derived from known dinuclear [[L(n)Co(III)(mu-NC)]Fe(II)(CN)(5)](-) complexes (L(n)() = N(5) or N(3)S(2) n-membered pendant amine macrocycle) are presented. All of the new trinuclear complexes were fully characterized spectroscopically (UV-vis, IR, and (13)C NMR). Complexes exhibiting a trans and cis arrangement of the Co-Fe-Co units around the [Fe(CN)(6)](4-) center are described (i.e., cis/trans-[{L(n)Co(III)(mu-NC)](2)Fe(II)(CN)(4)](2+)), and some of their structures are determined by X-ray crystallography. Electrochemical experiments revealed an expected anodic shift of the Fe(III/II) redox potential upon addition of a tripositively charged [Co(III)L(n)] moiety. The Co(III/II) redox potentials do not change greatly from the di- to the trinuclear complex, but rather behave in a fully independent and noncooperative way. In this respect, the energies and extinction coefficients of the MMCT bands agree with the formal existence of two mixed-valence Fe(II)-CN-Co(III) units per molecule. Solvatochromic experiments also indicated that the MMCT band of these compounds behaves as expected for a class II mixed-valence complex. Nevertheless, its extinction coefficient is dramatically increased upon increasing the solvent donor number.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号