共查询到20条相似文献,搜索用时 14 毫秒
1.
N. G. Grigor’eva A. M. Suleimanova M. R. Agliullin B. I. Kutepov 《Russian Journal of Applied Chemistry》2014,87(6):773-779
The catalytic properties of zeolites HY, HBeta, and HZSM-12 and of mesoporous amorphous aluminosilicate in liquid-phase esterification of aliphatic (monobasic C1–C18, dibasic C6, C10) and aromatic (benzoic, trimellitic, phthalic) carboxylic acids with butanol were studied. Zeolite HBeta appeared to be the most active catalyst. Procedures were developed for preparing esters in the presence of zeolitic catalyst HBeta, ensuring 100% selectivity of ester formation at 90–98% conversion of the acid. 相似文献
2.
Yu. G. Gol'tsov Z. V. Smelaya L. A. Matkovskaya V. V. Tsyrina V. G. Il'in 《Theoretical and Experimental Chemistry》1999,35(2):109-113
It has been established that supramolecular structures of lecithin can act as templates in the synthesis of mesoporous aluminosilicates. Mesoporous substances, with pore dimensions up to 100 Å and biporous materials can be obtained when various combinations of lecithin with cetyltrimethylammonium bromide or octadecylamine are used as template agents in the aluminosilicate system. 相似文献
3.
Hongxian Han Michael N. Paddon-Row Russell F. Howe 《Research on Chemical Intermediates》2008,34(5-7):551-564
EPR spectroscopy has been used to investigate spontaneous and/or photo-induced electron transfer between adsorbed organic molecules and the mesoporous aluminosilicate MCM-41 host. Spontaneous electron transfer occurs from the host to electron acceptor molecules with sufficiently favourable reduction potentials (TCNE, TCNQ, 1,4-benzoquinone, 1,4-naphthaquinone and 1,4-anthraquinone), provided the MCM-41 contains aluminium and the radical anion yield correlates with the aluminium content of the host. The semiquinone radical anions are interacting strongly with exposed Al3+ sites, whereas the TCNE and TCNQ radical anions are loosely bound and can be washed from the host. Radical cation formation is observed when electron donor molecules with favourable oxidation potentials are adsorbed in MCM-41 containing aluminium, and the radical cations formed interact with exposed Al3+ sites. This work shows that aluminium-containing MCM-41 contains both electron donating and electron accepting sites which may intervene in intra-molecular charge separation processes in adsorbed organic molecules. 相似文献
4.
Huang Tang WangLiang Li QingFen Liu LiLi Guan JiaQing Song JianMin Xing HuiZhou Liu 《中国科学B辑(英文版)》2009,52(3):276-281
Mesoporous aluminosilicates (MAS) bearing microporous zeolite units and mesoporous structures were synthesized by the hydrothermal
method. Adsorptive desulfurization ability of model oil and hydrotreated diesel was studied. The effects of template concentration,
crystalization time and calcination time were investigated. The desulfurization ability of adsorbents was improved by transitional
metal ion-exchanging. The adsorptive desulfurization of diesel was carried out on a fixed-bed system. The results show that
the adsorptive capacity is MAS>MCM-41>NaY. The improvement of desulfurization ability of MAS by Cu+ is more significant than that of Ag+.
Supported by National Basic Research Program of China (Grant No. 2006CB202507), National High-tech R&D Program (Grant No.
2006AA02Z209), and the National Natural Science Foundation of China (Grant No. 20806086) 相似文献
5.
Finnefrock AC Ulrich R Toombes GE Gruner SM Wiesner U 《Journal of the American Chemical Society》2003,125(43):13084-13093
A novel cubic bicontinuous morphology is found in polymer-ceramic nanocomposites and mesoporous aluminosilicates that are derived by an amphiphilic diblock copolymer, poly(isoprene-b-ethylene oxide) (PI-b-PEO), used as a structure-directing agent for an inorganic aluminosilicate. Small-angle X-ray scattering (SAXS) was employed to unambiguously identify the Im(-)3m crystallographic symmetry of the materials by fitting individual Bragg peak positions in the two-dimensional X-ray images. Structure factor calculations, in conjunction with results from transmission electron microscopy, were used to narrow the range of possible structures consistent with the symmetry and showed the plumber's nightmare morphology to be consistent with the data. The samples are made by deposition onto a substrate that imposes a strain field, generating a lattice distortion. This distortion is quantitatively analyzed and shown to have resulted in shrinkage of the crystallites by approximately one-third in a direction perpendicular to the substrate, in both as-made composites and calcined ceramic materials. Finally, the observation of the bicontinuous block-copolymer-derived hybrid morphology is discussed in the context of a pseudo-ternary morphology diagram and compared to existing studies of ternary phase diagrams of amphiphiles in a mixture of two solvents. The calcined mesoporous materials have potential applications in the fields of catalysis, separation technology, and microelectronics. 相似文献
6.
S. V. Lysenko I. O. Krukov O. A. Sarkisov A. B. Abikenova S. V. Baranova V. A. Ostroumova S. V. Kardashev N. F. Kovaleva E. A. Karakhanov 《Moscow University Chemistry Bulletin》2011,66(2):116-120
Mesoporous aluminosilicates with specific surface area up to 1030 m2/g and pore diameters from 33 to 43 Å were obtained using hexadecylamine and block copolymers of polyethylene and polypropylene oxides as structural directing agents. The synthesized materials were tested in catalytic cracking of hydrotreated vacuum gas oil at 500°C. 相似文献
7.
Hydrogenation of naphthalene on noble-metal-containing mesoporous MCM-41 aluminosilicates 总被引:2,自引:0,他引:2
S. Albertazzi R. Ganzerla C. Gobbi M. Lenarda M. Mandreoli E. Salatelli P. Savini L. Storaro A. Vaccari 《Journal of molecular catalysis. A, Chemical》2003,200(1-2):261-270
Aromatic saturation of oil fractions is a key process in the refining industry due to increasing demand for cleanest distillates with superior performances. In this study, the behavior of different catalysts containing 1 wt.% of noble-metal inside a mesoporous MCM-41 (Si:Al=20) framework was investigated in the hydrogenation of naphthalene, as preliminary step to investigate bimetallic catalysts. While at atmospheric pressure only Rh and Pd showed a low hydrogenation activity, in the tests performed at 6.0 MPa the catalytic activity grew, exhibiting the following order: Pt>RhPd>>>Ru≈Ir. However, all the catalysts required a large H2 excess, to avoid a decrease in hydrogenation and ring-opening activity, and gave rise to the best performance for a contact time of 6.8 s, favouring at lower values the partial hydrogenation to tetralin and at higher values cracking reactions. Finally, all the catalysts showed low thio-tolerance, with significant deactivation already feeding 100 ppm wt. of dibenzothiophene (DBT), with a partial reversibility only for the Pt-containing catalyst (CAT 3). 相似文献
8.
9.
L. V. Furda I. G. Ryl’tsova O. E. Lebedeva 《Russian Journal of Applied Chemistry》2008,81(9):1630-1633
Degradation of polyethylene in the presence of synthetic amorphous aluminosilicates as catalysts to form petroleum-like hydrocarbons was studied. 相似文献
10.
One-step synthesis of hydrothermally stable mesoporous aluminosilicates with strong acidity 总被引:1,自引:0,他引:1
Using tetraethylorthosilicate (TEOS), polymethylhydrosiloxane (PMHS) and aluminium isopropoxide (AIP) as the reactants, through a one-step nonsurfactant route based on PMHS-TEOS-AIP co-polycondensation, hydrothermally stable mesoporous aluminosilicates with different Si/Al molar ratios were successfully prepared. All samples exclusively showed narrow pore size distribution centered at 3.6 nm. To assess the hydrothermal stability, samples were subjected to 100 °C distilled water for 300 h. The boiled mesoporous aluminosilicates have nearly the same N2 adsorption-desorption isotherms and the same pore size distributions as those newly synthesized ones, indicating excellent hydrothermal stability. The 29Si MAS NMR spectra confirmed that PMHS and TEOS have jointly condensed and CH3 groups have been introduced into the materials. The 27Al MAS NMR spectra indicated that Al atoms have been incorporated in the mesopore frameworks. The NH3 temperature-programmed desorption showed strong acidity. Due to the existence of large amount of CH3 groups, the mesoporous aluminosilicates obtained good hydrophobicity. Owing to the relatively large pore and the strong acidity provided by the uniform four-coordinated Al atoms, the excellent catalytic performance for 1,3,5-triisopropylbenzene cracking was acquired easily. The materials may be a profitable complement for the synthesis of solid acid catalysts. 相似文献
11.
Mollusk shell formation: a source of new concepts for understanding biomineralization processes 总被引:9,自引:0,他引:9
Addadi L Joester D Nudelman F Weiner S 《Chemistry (Weinheim an der Bergstrasse, Germany)》2006,12(4):980-987
The biological approach to forming crystals is proving to be most surprising. Mollusks build their shells by using a hydrophobic silk gel, very acidic aspartic acid rich proteins, and apparently also an amorphous precursor phase from which the crystals form. All this takes place in a highly structured chitinous framework. Here we present ideas on how these disparate components work together to produce the highly structured pearly nacreous layer of the mollusk shell. 相似文献
12.
以微孔β沸石为硅铝源,通过碱处理和以十六烷基三甲基溴化铵为模板剂,合成了具有较强酸性的六方结构介孔分子筛材料B-MCM-41,并采用XRD、N2吸附脱附、FT-IR、27Al MAS NMR、HRTEM和水热处理等手段对其进行了结构表征,采用NH3-TPD对其进行了酸性表征。实验结果表明,B-MCM-41具有明显强于常规介孔分子筛的酸性,且在C+10混合芳烃加氢脱烷基化反应中表现出了良好的催化性能。这主要是由于碱溶液将β沸石降解为沸石结构单元,在表面活性剂作用下五元环次级结构单元被引入了介孔铝硅酸盐B-MCM-41的结构。 相似文献
13.
14.
《Comptes Rendus Chimie》2015,18(10):1106-1113
Raw and variously modified layered aluminosilicates have been used as catalysts in the reaction of ethanol oxidation both in the presence and absence of NOx. In this study, we clearly showed that the conversion of VOC on the modified layered aluminosilicates decreases slightly in the presence of NOx. However, the presence of NOx in the reaction mixture did not affect the stability of the used catalysts. Only a small change of selectivity depending on the carrier type as well as on the way of modification was found. 相似文献
15.
FSM-16, a mesoporous silica, was found to catalyze oxidative photo-decarboxylation of alpha-hydroxy carboxylic acid, phenyl acetic acid derivatives and N-acyl-protected alpha-amino acids to afford the corresponding carbonyl compounds. Furthermore, FSM-16 proved to be re-usable by re-calcination at 450 degrees C after the reaction. 相似文献
16.
Enhancing stability and oxidation activity of cytochrome C by immobilization in the nanochannels of mesoporous aluminosilicates 总被引:4,自引:0,他引:4
Lee CH Lang J Yen CW Shih PC Lin TS Mou CY 《The journal of physical chemistry. B》2005,109(25):12277-12286
Hydrothermally stable and structrurally ordered mesoporous and microporous aluminosilicates with different pore sizes have been synthesized to immobilize cytochrome c (cyt c): MAS-9 (pore size 90 A), MCM-48-S (27 A), MCM-41-S (25 A), and Y zeolites (7.4 A). The amount of cyt c adsorption could be increased by the introduction of aluminum into the framework of pure silica materials. Among these mesoprous silicas (MPS), MAS-9 showed the highest loading capacity due to its large pore size. However, cyt c immobilized in MAS-9 could undergo facile unfolding during hydrothermal treatments. MCM-41-S and MCM-48-S have the pore sizes that match well the size of cyt c (25 x 25 x 37 A). Hence the adsorbed cyt c in these two medium pore size MPS have the highest hydrothermal stability and overall catalytic activity. On the other hand, the pore size of NaY zeolite is so small that cyt c is mostly adsorbed only on the outer surface and loses its enzymatic activity rapidly. The improved stability and high catalytic activity of cyt c immobilized in MPS are attributed to the electrostatic attraction between the pore surface and cyt c and the confinement provided by nanochannels. We further observed that cyt c immobilized in MPS exists in both high and low spin states, as inferred from the ESR and UV-vis studies. This is different from the native cyt c, which shows primarily the low spin state. The high spin state arises from the replacement of Met-80 ligands of heme Fe (III) by water or silanol group on silica surface, which could open up the heme groove for easy access of oxidants and substrates to iron center and facilitate the catalytic activity. In the catalytic study, MAS-9-cyt c showed the highest specific activity toward the oxidation of polycyclic aromatic hydrocarbons (PAHs), which arises from the fast mass transfer rate of reaction substrate due to its large pore size. For pinacyanol (a hydrophilic substrate), MCM-41-S-cyt c and MCM-48-S-cyt c showed higher specific activity than NaY-cyt c and MAS-9-cyt c. The result indicated that cyt c embedded in the channels of MCM-41-S and MCM-48-S was protected against unfolding and loss of activity. By increasing the concentration of the spin trapping agent, 5,5-dimethyl-1-pyrroline N-oxide (DMPO) in ESR experiments, we showed that cyt c catalyzes a homolytic cleavage of the O-O bond of hydroperoxide and generates a protein cation radical (g = 2.00). Possible mechanisms for MPS-cyt c catalytic oxidation of hydroperoxides and PAHs are proposed based on the spectroscopic characterizations of the systems. 相似文献
17.
18.
N. P. Shapkin I. M. Ermak V. I. Razov V. N. Davydova I. G. Khal’chenko A. L. Shkuratov 《Russian Journal of Inorganic Chemistry》2014,59(6):587-591
Organomodified aluminosilicates for purification of biological solutions were prepared from a natural zeolite. The synthesis was performed by chemical deposition of chitosan on the zeolite surface followed by successive treatment with a solution of copper sulfate and a solution of potassium ferricyanide. The composition of sorbents was determined by elemental analysis. The physicochemical properties of the starting and modified zeolites were studied by the positron annihilation spectroscopy, IR spectroscopy, powder X-ray diffraction, and scanning electron microscopy, while the adsorption properties were examined by sorption of brilliant green. The adsorption behavior of the zeolites toward endotoxins was assessed. The sorbent containing the ferricyanide-chitosan complex was found to have the highest sorption capacity for lipopolyssacharides (endotoxins). 相似文献
19.
Preparation of mesoporous carbon from commercial activated carbon with steam activation in the presence of cerium oxide 总被引:2,自引:0,他引:2
Mesoporous carbon was prepared from the commercial activated carbon by steam activation with cerium oxide as catalyst. Steam activation with a catalyst loading of 0.5-2.0 wt% at 680-870 degrees C was examined. The surface area and pore size were evaluated by nitrogen adsorption at 77 K, and the structure of cerium oxide was characterized by XRD, XPS, and TEM. The results showed that the catalyst promoted the development of a mesopore at lower temperature (680-740 degrees C), and the mesopore was concentrated around 4-10 nm. The noncatalytic activation was advantageous in mesopore development and the catalyst would restrict the formation of mesopores at high temperature (800-870 degrees C). Higher loading of cerium oxide and higher activation temperature caused the aggregation of cerium oxide and then resulted in scattered pore size distribution. 相似文献
20.
丙烯是一种重要的化工原料, 其下游产品丰富, 用途广泛, 主要用于生产聚丙烯、丙烯腈、丙烯酸和丁醇等化工产品.丙烯的需求正在不断增长, 而传统的丙烯生产方法如蒸汽裂解和石油催化裂化, 存在反应温度高、积碳严重且丙烯收率较低等问题. 因此研制丙烷脱氢制取丙烯的高效催化剂尤为重要. 研究发现, 以 CO2作为温和氧化剂进行逆水气变换反应可有效促进丙烷脱氢. 催化剂主要由活性组分与载体构成, 本文选择可用于活化丙烷的钒作为主要活性组分. 钒氧化物在载体上的高度分散是提高丙烷脱氢反应活性的关键. MCM-41 拥有较大的比表面积和高度有序的介孔结构, 可更有效地分散活性位点. 本文采用一步法合成了不同钒含量的 nV-MCM-41 催化剂 (1.9-10.6 wt%), 并研究了其在以下条件下催化丙烷氧化脱氢制丙烯反应性能: 600 °C, 催化剂质量 0.2 g, 进料气体组成 C3H8/CO2/Ar (摩尔比) = 1/4/4, 进料气体总流量 15 mL/min. 其中 6.8V-MCM-41 催化剂具有最高的活性, 其初始丙烷转化率达 58%, 丙烯选择性达 92%, 远高于相似反应条件下早期研究的 nV-SBA-15 催化剂. 并在四次反应-再生循环中始终保持其原来的高反应活性. 本文借助于 N2吸附-脱附、拉曼光谱 (Raman)、X 射线光电子能谱 (XPS)和热重 (TG) 等手段探究了不同钒含量的 nV-MCM-41 催化剂在丙烷脱氢反应中催化性能差异的原因.氮气吸附-脱附结果表明, 所有催化剂都存在典型的高度有序的介孔结构, 并没有因为钒组分的掺杂而破坏. nV-MCM-41催化剂拥有较大比表面积,并随钒掺杂量的增加而减小. 其中,10.8V-MCM-41催化剂的比表面积急剧下降,可能是由于产生了结晶的 V2O5阻塞了孔道. Raman 结果表明, 当钒负载量超过 6.8 wt% 时, 出现了 V2O5的结晶峰. 另外根据单分散的四面体钒氧化物的特征峰面积发现, 6.8V-MCM-41 催化剂中钒物种分散度最高, 与其具有最高催化活性结果一致. XPS 结果也进一步证明 6.8V-MCM-41 钒物种的分散度最高. 在连续反应过程中 6.8V-MCM-41 催化剂失活较快,可归结于活性钒位点的还原与催化剂表面的积碳. 通过氧化再生, 可恢复催化剂活性, 并且在 4 次再生循环中始终保持其良好稳定的活性. 相似文献