首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
二直线重合的条件在解几中已有广泛的应用,下面举几个三角方面的例子: 例1 消去θ acosθ+bsinθ=c, acos3θ+bsin3θ=c. 解:设直线ax+by-c=0 ①显然,点(cosθ,sinθ)、(coc3θ,sin3θ)在此直线上,又过这二点的直线方程可写成 (y-sinθ)/(x-cosθ)=(sinθ-sin3θ)/(cosθ-cos3θ),即cos2θ·x+sin2θ·y-cosθ=0 ②由于①、②为同一直线故可得a/cos2θ=b/sin2θ=c/cosθ,∴a~2/cos~22θ=b~/sin~22θ=c~2/cos~2θ,∴(a~2+b~2-2c~2)~2=a~2(a~2+b~2).  相似文献   

2.
在六年制重点中学课本《解析几何》(平面)中,介绍了三种圆锥曲线的统一的极坐标方程ρ=ep/(1-ecosθ)。这里,谈谈中心在极点(抛物线的顶点在极点)、焦点(右)在极轴上的椭圆、双曲线、抛物线的极坐标方程与应用。 (一) 定理1 中心在极点、右焦点在极轴上的椭圆x~2/a~2+y~2/p~2=1(a>b>0)的极坐标方程为ρ~2=b~2/(1-e~2cosθ)(e为离心率) 证明:将x=ρcosθ、y=ρsinθ代入椭圆x~2/a~2+y~2/b~2=1得b~2ρ~2cos~2θ+a~2ρ~2sin~2θ=a~2b~2, ∴ρ~2=a~2b~2/(b~2cos~2θ+a~2sin~2θ)  相似文献   

3.
题目 A、B为椭圆b~2x~2+a~2y~2=a~2b~2(a>b>0)上的两点,O为中心,OA⊥OB;求1/OA+1/OB的南的最大值和最小值。错解化椭圆的普通方程为参数方程x=acosθ y=bsinθ (θ为参数) 设A、B两点的坐标分别(acosθ_1,bs nθ_1),(cosθ_2,bsinθ_2)。由OA⊥OB得θ_2+θ_1±π/2,则B点坐标为(±asinθ_1,bcosθ_1)。可证 1/(OA)~2+1/(OB)~2=(a~2+b~2)/a~2b~2。则有 (1/OA)+(1/OP)~2=(a~2+b~2)/(a~2b~2)+2/(OA·OB) =(a~2+b~2)/(a~2b~2)+2/(a~2b~2+(a~2-b~2)/2))~2sn~2θ_1  相似文献   

4.
谁是准非     
题:求函数y=(sinx+1/sin~2x)+(cos~2x+1/cos~2x)的极值。下面给出两个解答: 解一■解二∵sin~2x+cos~2x=1 ∴1/sin~2x+1/cos~2x=1/sin~2xcos~2x =4/sin~22x≥4 ∴y_(min)=5. 显然,两个答案不可能都正确。那么,究竟谁是谁非呢? 注意:式子sin~2x+1/sin~2x≥2,当且仅当x=kπ+n/2时等号才成立,而此时1/cos~2x不存在;式子cos~2x+1/cos~2≥2当且仅当x=kπ时  相似文献   

5.
例1 若acosθ+bsinθ=c(1) dcosθ+esinθ=f(2)求证(ce-bf)~2+(af-ed)~2=(ae-bd)~2(3) 其中ae-bd≠0。对于此题,欲证(3)成立,只要从(1)、(2)中消去参数θ即可。具体作法是 (1)×d-(2)×a得 sinθ=af-ed/ae-bd, (1)×e-(2)×b得 cosθ=af-ed/ae-bd代入恒等式Sin~2θ+COS~2θ=1,即得(3)。这种方法是众所周知的,而有时要想从关于f(sinθ,cosθ)的条件等式中,直接解出sinθ,Cosθ,然后利用sin~2θ+cos~2θ=1去消参就相当困难,甚至是不可能的,因此必须另辟途  相似文献   

6.
有些代数问题,如用纯代数方法求解往往比较困难,但通过适当的换元,变成三角问题求解,不但可以简化书写过程,而且能使数量系明朗化,从而化难为易,找到解决问题的途经。代数问题进行三角代换,关键在于熟悉三角函数的性质和一些重要大系式。下面归类举例说明: 一形如x~2+y~2=1,x+y=1(x,y为正数),可设x=sina,y=cosa 或者x=sin~2a,y=cos~2a。例1 已知a~2+b~2=1,c~2+d~2=1,求证|2abd+(a~2-b~3)c|≤1 证明:因为 a~2+b~2=1,c~2+a~2=1,故可设=sina,则b=±cosa,又令C=sinβ,则d=±cosβ而有 |2abd+(a~2-b~2)c|=|2sina(±cosa)(±cosB)  相似文献   

7.
<正>问题提出(人教A版选修4-4p_(34)习题第2题)已知椭圆x~2/a~2+y~2/b~2=1(a>b>0)上任意一点M(除短轴端点外)与短轴两端点B_1,B_2的连线分别与x轴交于P,Q两点,O为椭圆的中心,求证:|OP|·|OQ|为定值.1解法探究解法1设M (a cosθ,bsinθ),P(x_P,0),  相似文献   

8.
定理 若直线l:Ax +By +C =0 (A2 +B2 ≠ 0 )与椭圆C :(x -x0 ) 2a2 + ( y - y0 ) 2b2 =1有公共点 ,则有(Aa) 2 + (Bb) 2 ≥ (Ax0 +By0 +C) 2 .证 由(x -x0 ) 2a2 + ( y - y0 ) 2b2 =1 ,可令x =x0 +acosθ,y =y0 +bsinθ ,代入Ax +By +C =0 (A2 +B2 ≠ 0 ) ,得A(x0 +acosθ) +B( y0 +bsinθ) +C =0 .整理得Aacosθ +Bbsinθ =- (Ax0 +By0 +C) .即 (Aa) 2 + (Bb) 2 sin(θ + φ) =- (Ax0 +By0 +C) (其中 φ为辅助角 ) .又 |sin(θ+ φ) |≤ 1 ,∴| - (Ax0 +By0 +C) |(Aa) 2 + (Bb) 2 ≤ 1 .即 (Aa) 2 + (Bb) 2 ≥ (Ax0 +By0…  相似文献   

9.
椭圆=1(a>b>0)或ρ=ep/(1-cosθ)(P为焦参数,(相似文献   

10.
二、复数复数这一章很多题都是用到任意复数z。z=a+bi(a,b∈R)或z=r(cosθ+isinθ)这个表示法来解或证的。例1.解方程|z|+z=8—4i求复数z。解:设z=a+bi(a,b∈R)|z|=(a~2+b~2)~(1/2)。由题设(a~2+b~2)~(1/2)+a+bi=8—4i由复数相等的条件得:  相似文献   

11.
a~3+b~3+c~3-3abc是一个有趣的代数式。它是一个三次齐次式,整齐、简单、易记,更重要的是它具有很多有用的性质。性质1° a~3+b~3+c~3-3abc能被a+b+c整除。事实上,a~3+b~3+c~3-3abc =(a+b+c)(a~2+b~2+c~2-db-bc-ca) 所以 a~3+b~3+c~3-3abc能被a+b+c整除。性质2°设a,b,c为非负实数, 则a~3+b3+c~3≥3abc,当且仅当a=b=c时取等号。证明∵a~2+b~2+c~2-ab-bc-ca =1/2〔(a-b)~2+(b-c)~2+(c-d)~2〕∴a~3+b~3+c~3-3abc=(a+b+c)·1/2〔(a-b)~2+(b-c)~2+(c-a)~2〕∵a≥0,b≥0,c≥0,且1/2〔(a-b)~2+  相似文献   

12.
本文给出用辅助函数法解题的若干例子。由此可以看出辅助函数法应用的一斑。例1 已知acosθ bsinθ=c,acosφ bsinφ=c((θ-φ)/2≠kπ,k为整数)。求证a/cos(θ φ)/2=b/sin(θ φ)/2=c/cos(θ-φ)/2 证明作辅助函数f=(x,y)=ax by-c,则点P(cosθ,sinθ),Q(cosφ,sinφ)在直线f(x,y)=0上,此时直线方程为ax by=c,由两点式可得 (y-sinθ)/(x-cosθ) =(sinθ-sinφ)/(cosθ-cosφ) ∴xcos[(θ φ)/2] ysin[(θ φ)/2] =cos[(θ-φ)/2],  相似文献   

13.
高级中学课本《代数》上册(必修)第236页中指出:形如asinx+bcosx=c的三角方程。可先在方程两边都除以(a~2+b~2)~(1/2),然后令cosθ=a/[(a~2+b~2)~(1/2)],sinθ=  相似文献   

14.
该文证明了双向不等式αQ(a,b)+(1-α)H(a,b)T(a,b)βQ(a,b)+(1-β)H(a,b)和λ/H(a,b)+(1-λ)/Q(a,b)1/T(a,b)μ/H(a,b)+(1-μ)/Q(a,b)对所有a,b0且a≠b成立的充分和必要条件是α≤5/6,β≥22~(1/2)π,λ0和μ1/6.其中Q(a,b)=((a~2+b~2)/2)~(1/2),H(a,b)=2ab/(a+b)和T(a,b)=2/π∫_0~(π/2)(a~2cos~2θ+b~2sin~2θ)~(1/2)dθ分别表示正数a和b的二次平均,调和平均和Toader平均.  相似文献   

15.
“1”的妙算     
(一)“1”作为单位元素,在数系中占有特殊地位;在中学教材之中还有许多具体的表达形式,例女;a·1/a=a°=1(a≠0);lg10=1,log_oa=1(a>0,a≠1);tgπ/4=1;sin~2θ+cos~2θ=1;|sinx|≤1等等.这些关系式常为人们  相似文献   

16.
代数在三角和几何上的应用非常广泛,某些三角问题,如证三角恒等式、解三角方程、解三角不等式等,如能转化为代数问题来解,往往较之纯用三角知识来解会更顺利和简捷。如令sinx=a,cosx=b,则由 sin~2x cos~2x=1,得a~2 b~2=1。于是可得代换公式{sinx=a,cosx=b a~2 b~2=1}。本文拟用{sinx=a,cosx=b a~2 b~2=1} 进行代换,探索三角问题转化成代数问题的解法。现举例供参考。例1解方程1/(sinx) 1/(cosx)=2。解设sinx=a,cosx=b,则原方程化为方程组  相似文献   

17.
1 证明∵(1·2·3…1984)~(1/1984)<1/1984 sum from k=1 to 1984 k=1/1984·(1984(1+1984))/2=1985/2, 上式两边1984次方,得 1984!<1985~(1984)·2~(-1984) 2 解∵ 1985能被5整除。又 1984~(1984)=(1985-1)~(1984)=1985~(1984)-C_(1984)~1·1985~(1983)+C_(1984)~2·1985~(198)~2+…-C_(1984)~(1983)·1985+1 ∴ 1984~(1984)除以5所得的余数是1。 3 证明由题设,得 l~2=a~2+b~2+c~2 且l>a l>b,l>c。∴l~(1984)=l~2、l~(1982)=(a~2+b~2+c~2)l~(1982)=a~2l~(1982)+b~2·l~(1982)+c~(2·1982)≥a~2·a~(1982)+b~2b~(1982)+c~2·c~(1982)=a~(1984)+b~(1984)+c~(1984) 4.证(k≥1)  相似文献   

18.
本文是[1]的继续.在[1]中,我们利用四阶行列式的特征证明了下面的定理. 定理 设Ai(acosθi,bsinθi)(i=1,2,3,4;0≤θi<2π)是椭圆x2/a2+y2/b2=1(其中a≠b)上互异四点,则四点共圆的充要条件是θ1+θ2+θ3+θ4=2π,4π,6π.  相似文献   

19.
众所周知,不等式a~2+b~2≥2ab是一个应用广泛的重要不等式,由此容易推出以下两个不等式: a~2+b~2+c~2≥ab+bc+ca; a~2+b~2+c~2+d~2≥ab+bc+cd+da。进一步推广可得更一般的如下: 定理当a_1∈R (i=1,2,…,n)时,  相似文献   

20.
本文拟介绍圆锥曲线的两个性质.定理1已知圆锥曲线C的焦点为F1,F2,准线为l1,l2.P为曲线C上一点,过点P作平行于曲线C的对称轴的直线交l1,l2于点M,N,直线MF1,NF2交于点Q,则点P,F1,F2,Q四点共圆.证不妨设曲线C为椭圆,其方程为(x~2)/(a_2)+(y~2)/(b~2)=1(a>b>0),则F1(-c,0),F2(c,0),设P(acosθ,bsinθ),N(a~2/c,bsinθ).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号