首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Composite solid electrolytes in the system (1???x)Li2CO3xAl2O3, with x?=?0.0–0.5 (mole), were synthesized by a sol–gel method. The synthesis carried out at low temperature resulted in voluminous and fluffy products. The obtained materials were characterized by X-ray diffraction, differential scanning calorimetry, scanning electron microscopy/energy-dispersive X-ray, Fourier transform infrared spectroscopy and AC impedance spectroscopy. Structural analysis of the samples showed an amorphous feature of Li2CO3 and traces of α-LiAlO2, γ-LiAlO2 and LiAl5O8. The prepared composite samples possess high ionic conductivities at 130–180 °C on account of the presence of lithium aluminates as well as the formation of a high concentration of an amorphous phase of Li2CO3 via this sol–gel preparative technique.  相似文献   

2.
Polycrystalline cubic Li7La3Zr2O12 (LLZ) with garnet-related type structure has been synthesized at 700 °C by modified sol–gel processes using citric acid as organic complexing agent and butan-1-ol or propan-2-ol as surface active agent. Thermal analysis (thermogravimetric/differential thermal analysis) indicated that the gel must be annealed at around 700 °C to completely remove the organic solvent. X-ray powder diffraction, X-ray fluorescence, and scanning electron microscopic investigations revealed that Al may not be essential to form cubic-phase LLZ; however, the addition of Al2O3 led to enhanced sintering of LLZ.  相似文献   

3.
The ferroelectric and polarization fatigue characteristics of Pb1-xCax(Zr0.52Ti0.48)O3 (PCZT) thin films prepared using the sol–gel method were studied. The Ca-doping slightly suppresses the ferroelectricity of Pb(Zr0.52Ti0.48)O3 (PZT) because of the quantum paraelectric behavior of CaTiO3. Compared with PZT thin films, the PCZT (x=0.2) thin films show enhanced fatigue resistance at room temperature, further emphasized by the almost fatigue-free behavior at 100 K. The temperature-dependent dc-conductivity suggests a decrease of the oxygen vacancy density by almost 20 times and a slightly declined activation energy U for oxygen vacancies, upon increasing of the Ca-doping content from 0.0 to 0.2. It is argued that the improved fatigue endurance is ascribed to the decreasing density of oxygen vacancies due to the Ca-doping, although the lowered activation energy of oxygen vacancies is unfavorable. PACS 77.84.Dy; 66.30.-h; 68.35.Fx  相似文献   

4.
Composite structures consisting of (001)-oriented SrTiO3 (STO)/La0.7Sr0.3MnO3 (LSMO) films of 30 nm thickness, grown on an (001) Pb(Mg1/3Nb2/3)TiO3– 28 mol.% PbTiO3 piezoelectric relaxor-ferroelectric single-crystalline wafer were investigated by means of Wide-Angle X-ray Diffraction (WAXRD) in situ under influence of a d.c. electric field with strength E up to ±18 kV/cm. The WAXRD measurements of the films and substrate reflection profiles resulted in a determination of the strain s in the films and the substrate separately. The strained state of the STO/LSMO films is effectively controlled by a huge converse piezoelectric effect of the PMN-PT substrate. The coefficients of coupling between electric-field-induced out-of-plane strain in the films and in the substrate for the composite system STO/LSMO/PMN-PT are obtained.  相似文献   

5.
A new Li4Ti5O12–SnO2 composite anode material for lithium-ion batteries has been prepared by loading SnO2 on Li4Ti5O12 to obtain composite material with improved electrochemical performance relative to Li4Ti5O12 and SnO2. The composite material was characterized by X-ray diffraction and scanning electron microscopy. The results indicated that SnO2 particles have encapsulated on the surface of the Li4Ti5O12 uniformly and tightly. Electrochemical results indicated that the Li4Ti5O12–SnO2 composite material increases the reversible capacity of Li4Ti5O12 and has good cycling reliability. At a current rate of 0.5 mA/cm2, the material delivered a discharge capacity of 236 mAh/g after 16 cycles. It suggests the existence of synergistic interaction between Li4Ti5O12 and SnO2 and that the capacity of the composite is not a simple weighted sum of the capacities of the individual components. In the composite material, SnO2 can act as a bridge between the spinel particles to reduce the interparticle resistance and as a good material for the Li intercalation/deintercalation. Thus, electrochemical performance of the Li4Ti5O12 spinel can be improved by the surface modification with SnO2, and the stability of Li4Ti5O12 also serves to buffer the internal stress caused by the volume changes in lithium insertion and extraction reactions.  相似文献   

6.
Nanocrystalline Ho-doped BaTiO3, with average nanocrystals size of 20 nm, have been prepared using a sol–gel combustion technique. The structural and morphological properties of the powders have been investigated by X-ray powder diffraction and high resolution transmission electron microscopy. Chemical states of the holmium on the Ba0.97Ho0.03TiO3 ceramic surface were analyzed using X-ray photoelectron spectroscopy. Furthermore, their photoluminescence properties were analyzed.  相似文献   

7.
The magnetic properties of magnesium–iron spinel (MgFe2O4) powdered nanoparticles obtained by glycine–nitrate synthesis are investigated by X-ray phase analysis and the NMR method. According to the results of X-ray phase analysis, the average size of the crystalline part of nanoparticles of the powder under investigation is 45 ± 4 nm. Magnetization J is determined using the formula J = (B/μ0)–H, where B and H are the induction and strength of the magnetic field in the sample, which are measured by the NMR method. The magnetic characteristics of MgFe2O4 are as follows: specific saturation magnetization Jsat = 17.52 A m2/kg, specific residual magnetization Jr = 5.73 A m2/kg, coercive force Hc = 4600 A/m, and magnetic moment Psat = 371 × 10–20 A m2 in the magnetic saturation state and Pr = 121 × 10–20 A m2 in the residual magnetization state.  相似文献   

8.
We report KF-doping work on the recently found ferroelectric material BaTi2O5. The ceramic samples, Ba1-xKxTi2O5-xFx, were synthesized by solid-state reaction of mixed KF and sol–gel-derived BaTi2O5 powders at 1150 °C. An almost pure phase was obtained for nominal composition x≤0.097, while electron probe microanalysis indicated that the real incorporated K and F contents were less than half of the nominal values. It was observed that KF-doping is beneficial in enhancing the ceramic density to some extent, which is a key issue in sol–gel-derived BaTi2O5 ceramics, due to a possible liquid-phase sintering mechanism through the presence of melted KF at the sintering temperature. Scanning electron microscopy images showed that these porous ceramic samples are composed of sub-micron-sized powder aggregates which, with increasing KF-doping, undergo further agglomeration. Dielectric measurement from room temperature to ∼ 560 °C showed a broad ferroelectric phase transition, with TC ∼ 430 °C for the undoped sample. As KF-doping increases, TC decreases, and the magnitude of the dielectric constant maximum also displays a decreasing trend. The strongly reduced dielectric response can be partly understood by regarding the porous ceramic sample as a composite material composed of bulk BaTi2O5 and air, where the porosity has a significant influence on the effective dielectric constant. PACS 77.84.-s; 77.84.Dy; 81.20.Fw  相似文献   

9.
A method has been developed for fabricating nanoporous matrices based on anodic aluminum oxide for the deposition of ferromagnetic nanoparticles in them. The modes of deposition of strontium ferromolybdate thin films prepared by the ion-plasma method have been worked out, and the magnetic and magnetoresistive properties, structure, and composition of the films have been investigated. It has been revealed that the microstructure and properties of the strontium ferromolybdate films deposited by ionplasma sputtering depend on the deposition rate and the temperature of the substrate. Based on the measurement of the electrical resistivity of nanoheterostructures in a magnetic field, it has been found that the magnetoresistance reaches 14% at T = 15 K and B = 8 T, which is due to the manifestation of tunneling magnetoresistance.  相似文献   

10.
Wei Yuan  Ji Yan  Zhiyuan Tang  Li Ma 《Ionics》2012,18(3):329-335
A novel ultrasonic-assisted sol–gel method is proposed to prepare Li3V2(PO4)3/C cathode material. X-ray diffraction analyses show that both Li3V2(PO4)3/C(A) synthesized by the ultrasonic-assisted sol–gel method and Li3V2(PO4)3/C(B) synthesized by a traditional sol–gel method have monoclinic structure. Scanning electron microscopy images indicate that the Li3V2(PO4)3/C(A) composite has a more uniform morphology than that of the Li3V2(PO4)3/C(B) composite. In the voltage range of 3.0–4.3 V (vs. Li/Li+), the initial specific discharge capacities of the Li3V2(PO4)3/C(A) and Li3V2(PO4)3/C(B) samples are 129.8 and 125.9 mAh g−1 at 1C rate (1C = 133 mA g−1), respectively. Furthermore, at 2-C charge/10-C discharge rate, the specific discharge capacity of the Li3V2(PO4)3/C(A) composite retains 113.2 mAh g−1 after 50 cycles, but the Li3V2(PO4)3/C(B) composite only presents a capacity of 94.8 mAh g−1.  相似文献   

11.
High field electrical switching on blown films of MoO3(60%)–P2O5(40%), MoO3(50%)–WO3(10%)–P2O5(40%), and MoO3(45%)–WO3(15%)–P2O5(40%) having different thicknesses was studied and compared. Switching was observed using two terminal samples. S-type current–voltage characteristic (current-controlled negative resistance—CCNR) with memory was observed in molybdenum–phosphate glasses, but N-type characteristic (voltage-controlled negative resistance—VCNR) with threshold in tungsten–molybdenum–phosphate glasses was observed. The important observation was that with the addition of WO3 to binary MoO3–P2O5 led to a change of IV characteristic from CCNR with memory to VCNR with threshold. The measurements of density and molar volume showed linear relation between MoO3 content and density which decreased with the increase of MoO3 content. The samples’ thickness had no significant effect on threshold voltage. The attained results also indicated that the electrode material had no effect on switching property of devices. The switching behavior of the devices did not show any dependence on the polarity of the applied voltage. In terms of the effect of heat on the switching behavior of molybdenum–phosphate glasses, it was found that threshold voltage decreases with increasing of temperature. Finally, the switching phenomenon was explained by thermal (formation of crystalline filaments) and electronic models.  相似文献   

12.
Ordered Fe2O3 nanowire arrays embedded in anodic alumina membranes have been fabricated by Sol–gel electrophoretic deposition. After annealing at 600 °C, the Fe2O3 nanowire arrays were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected-area electron diffraction (SAED) and X-ray diffraction (XRD). SEM and TEM images show that these nanowires are dense, continuous and arranged roughly parallel to one another. XRD and SAED analysis together indicate that these Fe2O3 nanowires crystallize with a polycrystalline corundum structure. The optical absorption band edge of Fe2O3 nanowire arrays exhibits a blue shift with respect of that of the bulk Fe2O3 owing to the quantum size effect. PACS 78.67.Lt; 81.05.Je; 81.07.Vb  相似文献   

13.
Strontium aluminates are viewed as a promising persistent luminescent materials. There are many researches on strontium aluminates, including SrAl2O4, Sr4Al14O25. Between these two phases, Sr4Al14O25 shows much better properties than SrAl2O4. The traditional way to synthesize Sr4Al14O25 is the solid state reaction. However, it exists few problems, especially non-homogeneous product. As a result, there are two methods chosen to make homogeneous precursor. One is sol–gel method, the other is combustion with Urea as a fuel. Boric acid is added as a flux in both method. In this study, combustion process is found to be a better way for synthesizing Sr4Al14O25. We change the temperature, synthetic method. The samples are finely grinded and used for XRD analysis, photoluminescence measurement, and after-glow decay curve to figure out the optimizing luminescent parameters.  相似文献   

14.
A model of the structure of the piezoelectric ceramic lead zirconate–titanate PbZr1–x Ti x O3 (PZT) is proposed. The model is based on ab initio calculations for possible local structures using the density functional theory (DFT) approach. A comparison of the calculated neutron diffraction data for local structures and the measured diffraction data obtained for actual powder samples shows there is a partially established long-range crystalline order in the material, in the sublattice of Zr and Ti cations.  相似文献   

15.
The inverse magnetoelectric effect and internal friction in two-layer composites based on ferromagnetic Tb0.12Dy0.2Fe0.68 and piezoelectric PbZr0.53Ti0.47O3 are studied in an ac electrical field in the frequency range of 52–213 kHz at temperatures of 293 to 400 K. A correlation is found between the internal friction and the efficiency of the inverse magnetoelectric transformation at resonant frequencies.  相似文献   

16.
Features of the formation of lead-ferroniobate compounds in the xBaCO3–(1 – x)PbO–Fe2O3–Nb2O5 system by solid-phase synthesis are investigated. For perovskite-type lead-ferroniobate solid solution, a single-phase concentration region is revealed at 1233 K. The crystalline structures of the synthesized compounds are refined using Rietveld analysis and the Pm3?m and R3m space groups. Ceramic samples of lead ferroniobate are studied by scanning electron microscopy.  相似文献   

17.
Superparamagnetic iron oxide nanoparticles are used in diverse applications, including optical magnetic recording, catalysts, gas sensors, targeted drug delivery, magnetic resonance imaging, and hyperthermic malignant cell therapy. Combustion synthesis of nanoparticles has significant advantages, including improved nanoparticle property control and commercial production rate capability with minimal post-processing. In the current study, superparamagnetic iron oxide nanoparticles were produced by flame synthesis using a coflow flame. The effect of flame configuration (diffusion and inverse diffusion), flame temperature, and additive loading on the final iron oxide nanoparticle morphology, elemental composition, and particle size were analyzed by transmission electron microscopy (TEM), high-resolution TEM (HR-TEM), energy dispersive spectroscopy (EDS), and Raman spectroscopy. The synthesized nanoparticles were primarily composed of two well known forms of iron oxide, namely hematite αFe2O3 and magnetite Fe3O4. We found that the synthesized nanoparticles were smaller (6–12 nm) for an inverse diffusion flame as compared to a diffusion flame configuration (50–60 nm) when CH4, O2, Ar, and N2 gas flow rates were kept constant. In order to investigate the effect of flame temperature, CH4, O2, Ar gas flow rates were kept constant, and N2 gas was added as a coolant to the system. TEM analysis of iron oxide nanoparticles synthesized using an inverse diffusion flame configuration with N2 cooling demonstrated that particles no larger than 50–60 nm in diameter can be grown, indicating that nanoparticles did not coalesce in the cooler flame. Raman spectroscopy showed that these nanoparticles were primarily magnetite, as opposed to the primarily hematite nanoparticles produced in the hot flame configuration. In order to understand the effect of additive loading on iron oxide nanoparticle morphology, an Ar stream carrying titanium-tetra-isopropoxide (TTIP) was flowed through the outer annulus along with the CH4 in the inverse diffusion flame configuration. When particles were synthesized in the presence of the TTIP additive, larger monodispersed individual particles (50–90 nm) were synthesized as observed by TEM. In this article, we show that iron oxide nanoparticles of varied morphology, composition, and size can be synthesized and controlled by varying flame configuration, flame temperature, and additive loading.  相似文献   

18.
LiCoPO4 and LiCoPO4/C electrode active material was synthesized by a simple single-step protocol namely citric acid-assisted, isopropanol-added sol–gel method. Structural and morphology studies reveal the formation of single-phase products of pristine as well as in situ carbon-coated nano-sized grains of genuine purple-colored product of LiCoPO4 and black-colored LiCoPO4/C due to uniform carbon coatings, respectively. In situ carbon coating was confirmed by scanning transmission electron microscopy imaging which exhibits the in situ nanocarbon coating networks. The electrode active characteristics of the synthesized products confirmed by resolved cyclic voltammograms corresponding to cobalt redox couple (Co2+/Co3+) confirm the lithium extraction/insertion reversible processes. Carbon coating ensures better resolved near symmetric redox peaks with increased current profile indicative of enhanced rate capability (Li+ extraction/insertion), presumably due to the enhanced electrode conductivity of the host matrix by means of carbon coating.  相似文献   

19.
This study presents a comprehensively and systematically structural, chemical and magnetic characterization of ~9.5 nm virtually monodispersed nickel ferrite (NiFe2O4) nanoparticles prepared using a modified liquid–solid-solution (LSS) assisted hydrothermal method. Lattice-resolution scanning transmission electron microscope (STEM) and converged beam electron diffraction pattern (CBED) techniques are adapted to characterize the detailed spatial morphology and crystal structure of individual NiFe2O4 particles at nano scale for the first time. It is found that each NiFe2O4 nanoparticle is single crystal with an fcc structure. The morphology investigation reveals that the prepared NiFe2O4 nanoparticles of which the surfaces are decorated by oleic acid are dispersed individually in hexane. The chemical composition of nickel ferrite nanoparticles is measured to be 1:2 atomic ratio of Ni:Fe, indicating a pure NiFe2O4 composition. Magnetic measurements reveal that the as-synthesized nanocrystals displayed superparamagnetic behavior at room temperature and were ferromagnetic at 10 K. The nanoscale characterization and magnetic investigation of monodispersed NiFe2O4 nanoparticles should be significant for its potential applications in the field of biomedicine and magnetic fluid using them as magnetic materials.  相似文献   

20.
The Fe3O4/polythiophene nanoparticles, possessing core–shell structure, were prepared by two-step method. In the first step, the Fe3O4 particles were synthesized via co-precipitation of FeCl3 and FeSO4, using the NH3·H2O and N2H4·H2O as precipitant system. In the second step, the thiophene adsorbed and polymerized on the surface of the Fe3O4 in the solvent of chloroform. Raman, FTIR, EDS, XRD, TEM, Zeta potential measurement and TG-SDTA were employed to characterize the composition and structure of the products. The results showed that the Fe3O4/polythiophene nanoparticles were successfully synthesized with good dispersion and stable core–shell structure, provided with average particle size of approximately 20 nm, in which the diameter of Fe3O4 core was approximately 14 nm and the thickness of polythiophene shell was approximately 3–4 nm. Then, the nanoparticles were added into alkyd varnish to prepare a composite coating. The neutral salt spray test, paraffin control test and mechanical test were carried out to identify the properties of the composite coating. It was found that the composite coating had good performances of anticorrosion and paraffin controlling when the mass fraction of the nanoparticles was 0.8–1 wt% in alkyd varnish. As a multifunctional material, the Fe3O4/polythiophene nanoparticles can be used in the internal coating of pipeline and have great potential application in crude oil pipeline transportation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号