首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A phase diagram, describing the behavior of the polar lipid monoolein (MO), water, and ethyl acetate (EtAc), is here presented as well as results from small angle X-ray scattering. MO is found to have a solubility of 60 wt.% in EtAc at 20 °C. No macroscopic aggregation of MO can, initially, be detected in the binary MO/EtAc solution even though MO forms solid crystals in concentrated samples when times goes by. In case of the ternary system small amounts of water, mainly bound to the lipid head groups, can be incorporated in the liquid EtAc/MO phase as water has a limited solubility in EtAc. For EtAc/water mass ratios below 2/3 EtAc is present into the reversed bicontinuous cubic and lamellar phases present in the binary MO/water system. To conclude, EtAc is mainly partitioned to the lipid membranes, with minor effects on spontaneous curvature. Hence, simple EtAc-addition has an effect similar to dehydration. For EtAc/water ratios above 2/3 the liquid crystalline phases dissolve. The phase behavior is here discussed in view of related phase behaviors for water-miscible solvent/MO/water systems. For instance, an interpretation of the swelling behavior of the sponge phase (L3), present in the water-miscible solvent(s)/MO/water systems, shows that solvents partitioned to the polar domains strongly increases the spontaneous curvature of the MO-films. The reason is probably weaker hydrophobic interactions in interfacial regions. As expected, in case of water-miscible solvents, the ternary phase behaviors can be understood by consider water and water-miscible solvent as one “mixed solvent”.  相似文献   

2.
We report localization of lipid membrane microdomains to specific "poles" of asymmetric giant vesicles (GVs) in response to local internal composition. Interior aqueous microdomains were generated in a simple model cytoplasm composed of a poly(ethyleneglycol) (PEG)/dextran aqueous two-phase system (ATPS) encapsulated in the vesicles. The GV membrane composition used here was a modification of a DOPC/DPPC/cholesterol mixture known to form micrometer-scale liquid ordered and liquid disordered domains; we added lipids with PEG 2000 Da-modified headgroups. Osmotically induced budding of the ATPS-containing GVs led to structures where the PEG-rich and dextran-rich interior aqueous phases were in contact with different regions of the vesicle membrane. Liquid ordered (L o) membrane domains rich in PEG-terminated lipids preferentially coated the PEG-rich aqueous phase vesicle "body", while coexisting liquid disordered (L d) membrane domains coated the dextran-rich aqueous phase "bud". Membrane domain positioning resulted from interactions between lipid headgroups and the interior aqueous polymer solutions, e.g., PEGylated headgroups with PEG and dextran polymers. Heating resulted first in patchy membranes where L o and L d domains no longer showed any preference for coating the PEG-rich vs dextran-rich interior aqueous volumes, and eventually complete lipid mixing. Upon cooling lipid domains again coated their preferred interior aqueous microvolume. This work shows that nonspecific interactions between interior aqueous contents and the membrane that encapsulates them can drive local chemical heterogeneity, and offers a primitive experimental model for membrane and cytoplasmic polarity in biological cells.  相似文献   

3.
A phase diagram, describing the behavior of the polar lipid monoolein (MO), water, and ethyl acetate (EtAc), is here presented as well as results from small angle X-ray scattering. MO is found to have a solubility of 60 wt.% in EtAc at 20 °C. No macroscopic aggregation of MO can, initially, be detected in the binary MO/EtAc solution even though MO forms solid crystals in concentrated samples when times goes by. In case of the ternary system small amounts of water, mainly bound to the lipid head groups, can be incorporated in the liquid EtAc/MO phase as water has a limited solubility in EtAc. For EtAc/water mass ratios below 2/3 EtAc is present into the reversed bicontinuous cubic and lamellar phases present in the binary MO/water system. To conclude, EtAc is mainly partitioned to the lipid membranes, with minor effects on spontaneous curvature. Hence, simple EtAc-addition has an effect similar to dehydration. For EtAc/water ratios above 2/3 the liquid crystalline phases dissolve. The phase behavior is here discussed in view of related phase behaviors for water-miscible solvent/MO/water systems. For instance, an interpretation of the swelling behavior of the sponge phase (L3), present in the water-miscible solvent(s)/MO/water systems, shows that solvents partitioned to the polar domains strongly increases the spontaneous curvature of the MO-films. The reason is probably weaker hydrophobic interactions in interfacial regions. As expected, in case of water-miscible solvents, the ternary phase behaviors can be understood by consider water and water-miscible solvent as one “mixed solvent”.  相似文献   

4.
Micrometer-sized, hemispherical polymer particles were prepared as a result of cleavage of spherical Janus poly(methyl methacrylate) (PMMA)/polystyrene (PS) composite particle by treating particles with acetone/water solutions. The original PMMA/PS composite particles were prepared by the slow evaporation of toluene from homogeneous PMMA/PS/toluene droplets dispersed in aqueous solution of sodium dodecyl sulfate in advance. Appropriate molecular weights of PMMA and PS were necessary for occurrence of the cleavage of the Janus composite particle, resulting in PMMA and PS hemispherical particles. The cleavage depended on the composition of the acetone/water solution, which was explained by selective solvent absorption into the polymer phases. The results strongly support the cleavage mechanism of Janus composite polymer particles that had been proposed earlier.  相似文献   

5.
The influence of branched poly(ethyleneimine) on the phase behavior of the system sodium dodecylsulfate/toluene-pentanol (1:1)/water has been studied. The isotropic microemulsions still exist when water is replaced with aqueous solutions of PEI (up to 30% in weight), but their stability is significantly influenced. From a polymer concentration of 20 wt%, the polymer enhances the solubilization of water in oil, changes the sign of the spontaneous curvature of the surfactant film, and induces an inversion of the microemulsion type from water-in-oil (L(2)) to oil-in-water (L(1)), by the formation of a bicontinuous channel. Further investigations show that the addition of polymer in the L(2) phase changes the droplet-droplet interactions as the conductivity drops and the percolation disappears. In the bicontinuous channel, higher viscosities can be detected, as well as a weak percolation followed by a steep increase of the conductivity, which can be related to evident structural changes in the system. DSC measurements allow then to follow the changes of the water properties in the system, from interfacial-water in the L(2) phase to free-water in the sponge-like phase. Finally, all the measurements performed permit to characterize the structural transitions in the system and to understand the role of the added polymer.  相似文献   

6.
Colloidal dispersions of Pt/Rh bimetallic particles have been synthesized by the reduction of Pt(IV)/Rh(III) ionic solutions by using borohydride-reduction in the presence of poly(N-vinyl-2-pyrrolidone). The size and the structure of the synthesized particles have been examined by transmission electron micrograph (TEM) and extended X-ray absorption fine structure (EXAFS). We have succeeded in producing the bimetallic Pt/Rh particles with an average diameter of 2.8 nm in polymer solutions by the stepwise addition of sodium borohydride aqueous solution. The distribution of different metallic species in a particle tended to be "cluster-in-cluster" structure, in contrast to the bimetallic particle with an average diameter of 1.4 nm synthesized by alcohol-reduction which have a core-shell structure.  相似文献   

7.
Summary: The effect of polymer end group on the morphology of polystyrene (PS)/poly(methyl methacrylate) (PMMA) composite particles was investigated on the basis of experimental observations and theoretical predictions. Both polymers with potassium persulfate (KPS)-derived hydrophilic end group(s) and 2,2′-azobis(isobutyronitrile) (AIBN)-derived hydrophobic end group(s) were synthesized by emulsifier-free emulsion polymerizations and solution polymerizations, respectively. Composite particles with the same end groups were prepared by release of toluene from PS/PMMA/toluene (1/1/24, w/w/w) droplets dispersed in an aqueous solution of sodium dodecyl sulfate (SDS). At a low SDS concentration, when the polymers with KPS-derived end group(s) were employed, acornlike particles were formed. On the other hand, when the polymers with AIBN-derived end group(s) were used, particles having a dimple were obtained. The interfacial tensions between toluene solutions of the polymers and SDS aqueous medium were lower for KPS-derived end group(s) than for AIBN-derived end group(s), and the difference was much larger for PS phase than PMMA phase. The predicted morphologies obtained from calculation of the minimum total interfacial free energy using the interfacial tensions agreed well with the experimentally observed morphologies in both cases. Moreover, the morphology of PS/PMMA composite particles with different end groups was also examined.  相似文献   

8.
Two series of novel inorganic-organic composite polymers have been prepared through physical blending of magnesium chloride and magnesium hydroxide respectively with polyacrylamide aqueous solution. The physicochemical properties of the magnesium salt-polyacrylamide composite polymers were tuned by varying the ratio between the magnesium salt (e.g., magnesium chloride and magnesium hydroxide) and polyacrylamide. Characterizations of magnesium salt-polyacrylamide composite polymers were carried out via FTIR and TEM. Parameters such as solution conductivity and viscosity were also taken into account to characterize the physicochemical properties of the composite polymer aqueous solutions. Magnesium chloride-polyacrylamide (MCPAM) composite polymer aqueous solutions have a higher conductivity compared to magnesium hydroxide-polyacrylamide (MHPAM) composite polymer aqueous solutions. The viscosities of the MHPAM composite polymer aqueous solutions were found higher than MCPAM composite polymer aqueous solutions. The rheological properties of the composite polymer aqueous solutions were investigated using steady-state flow and oscillatory frequency sweep within the linear viscoelastic region. Shear-thinning effect was observed for both composite polymer systems when the shear rate increases. In oscillatory frequency sweep tests, both composite polymer systems show that the viscoelastic behaviors depend strongly on the magnesium salt concentrations. Viscous behavior was found to be dominant for both composite polymer systems.  相似文献   

9.
对包含纳米SiO2粒子的甲基丙烯酸甲酯(MMA)的细乳化和细乳液聚合行为进行了研究.发现在超声细乳化过程中,90%以上的分散于MMA相的纳米SiO2粒子将从油相逃逸到水相.采用甲基丙烯酸3-(三甲氧基甲硅烷基)丙酯(MPS)偶联剂处理SiO2粒子,可以增加其表面亲油性,抑止这种逃逸,经测定几乎全部SiO2粒子在超声细乳化后仍稳定停留在细乳化亚微液滴中.通过进一步细乳液聚合,得到了分散稳定、界面清晰的包裹有纳米SiO2粒子的聚甲基丙烯酸甲酯复合粒子乳液.  相似文献   

10.
Micrometer-sized, monodisperse polystyrene (PS)/poly[methyl methacrylate-(chloromethyl)styrene] [P(MMA-CMS)] composite particles having hemispherical structure were prepared by solvent evaporation from toluene droplets containing dissolved PS and P(MMA-CMS) dispersed in aqueous solution, which had been prepared using the membrane method. The formation of hemispherical ("Janus") morphology by phase separation between the PS and the P(MMA-CMS) was confirmed by both optical and electron microscopy. Atom transfer radical polymerization (ATRP) of 2-(dimethylamino)ethyl methacrylate (DM) was subsequently carried out in the presence of hemispherical PS/P(MMA-CMS) composite particles in an aqueous dispersed system. After polymerization, the morphology of the particles changed from spherical to "mushroom" shape as observed by scanning electron microscopy, indicating that DM polymerized inside or on the surface of half [P(MMA-CMS) phase] of the particles. 1H NMR spectra were consistent with chloromethyl functional groups in P(MMA-CMS) operating as ATRP initiators in the DM polymerization.  相似文献   

11.
"Snowmanlike" polystyrene (PS)/poly(methyl methacrylate) (PMMA) composite particles were prepared by evaporation of toluene from PS/PMMA/toluene droplets dispersed in an aqueous solution of polyoxyethylene nonylphenyl ether surfactant (Emulgen 911). Partitioning experiments revealed that the Emulgen 911 concentration was higher in the droplets than in the aqueous solution during toluene evaporation. As a consequence, the interfacial tensions between the polymer phases (PS and PMMA) and the aqueous phase (gammaP-T/W) were extraordinarily low (approximately 10(-1) mN/m). The interfacial tension between the PS and PMMA phases containing toluene (gammaPS-T/PMMA-T) measured by the spinning drop method was not affected by the presence of Emulgen 911. Based on minimization of the total interfacial free energy at a polymer weight fraction in the toluene droplet of 0.17, the formation of spherical droplets is expected, in agreement with experiment. The subsequent morphology change of the PS/PMMA/toluene droplets from spherical to snowmanlike during toluene evaporation under thermodynamic equilibrium is attributed to (i) the low values of gammaP-T/W, which explains the increase in the interfacial area between the droplets and the aqueous phase, and (ii) the increase in gammaPS-T/PMMA-T with increasing polymer weight fraction.  相似文献   

12.
The effect of 60Co γ-irradiation on aqueous solutions of poly(N-vinyl-2-pyrrolidone) (PVP) in the presence of persulfate anion has been investigated. The gelation dose of PVP and persulfate containing PVP aqueous solutions has been determined. At low concentrations of persulfate (1.00–3.50%), gelation percentages exhibited a decreasing trend by increasing persulfate content in aqueous solutions of the polymer. The gelation doses of persulfate containing polymer solutions were calculated by the Charlesby–Pinner equation. It was observed that the gelation dose values were shifted to higher values by increasing persulfate concentration in solution. The ratio of the chain scission and crosslinking yields (G(s)/G(x)) was also determined. The results showed that the G(s)/G(x) ratios were smaller than one for PVP aqueous solution system, whereas those obtained for persulfate containing PVP aqueous solutions were higher than unity. The results implied that the chain scission of polymer is more effective than crosslinking in the presence of persulfate. Mechanism of the crosslinking and/or degradation and structure–property relationship of PVP and PVP/persulfate hydrogel systems were investigated by Fourier transformation infeared and thermal analysis (differential scanning calorimetry, thermal gravimetric analysis and differential thermai analysis) methods.  相似文献   

13.
We have developed a model polymer/metal composite system based on the adsorption of colloidal gold particles from a dilute aqueous suspension to the surface of poly(2-vinylpyr-idine) (PVP). Particle coverages and tracer diffusion coefficients for the particles within a PVP matrix phase were measured by Rutherford backscattering spectrometry. The adsorption process is quantitatively described by a diffusion-limited mechanism where gold particles irreversibly adsorb to the surface of the polymer film. Model dispersions produced in this way are excellent model systems for studying the fundamental properties of metal particle dispersions, since the particle size and the areal density of particles on the surface are well-controlled. Diffusion coefficients for the gold particles within PVP were also measured. The diffusion of the gold particles was found to be coupled to the bulk viscosity of the polymer, even though the size of the gold particles was only slightly larger than the mesh size of the entanglement network for PVP. © 1995 John Wiley & Sons, Inc.  相似文献   

14.
在40 Hz~11 MHz频率范围测量了聚苯乙烯膜以及混入聚吡咯粒子的聚苯乙烯膜和电解质溶液构成的体系的介电谱, 发现了特异的弛豫现象: 纯的和掺入导电性聚吡咯后的聚苯乙烯膜分别显示出单一弛豫和双弛豫的不同模式的介电谱. 在Maxwell-Wagner界面极化概念基础上解释了该弛豫机制: 高、低频弛豫分别由膜-液界面极化和膜相本身的不均一性引起的. 将体系进行了模型化, 并利用Hanai理论方法对谱进行了解析, 获得了内部电性质的诸多参数. 对不同聚吡咯掺入量的膜/溶液体系的介电测量和解析结果表明, 电解质溶液的种类、浓度以及膜中混入聚吡咯的量都影响着膜相的介电响应. 这些结论为利用加入导电粒子改善绝缘高分子聚合物的电性质的研究以及制备既具有导电功能又使基体的力学性能得到提高的高分子复合物提供了重要的线索.  相似文献   

15.
Poly(methyl methacrylate)(PMMA)/polystyrene(PS)/carbon black(CB)and poly(ethyl methacrylate)(PEMA)/PS/CB ternary composite films were obtained using solution casting technique to investigate double percolation effect.In both PMMA/PS/CB and PEMA/PS/CB ternary composite films,the CB particles prefer to locate into PS phase based on the results of calculating wetting coefficient,which is also confirmed by SEM images.The conductivity of the films was investigated,and the percolation threshold(¢c)of both ternary composite films with different polymer blend ratios was determined by fitting the McLachlan GEM equation.Conductivity of PMMA/PS/CB ternary composite films showed a typical double percolation effect.However,due to the double emulsion structure of PEMA/PS polymer blends,the PEMA/PS/CB ternary composite films(PEMA/PS=50/50)showed a higher¢c,even CB only located in PS phase,which conflicts with the double percolation effect.A schematic diagram combined with SEM images was proposed to explain this phenomenon.  相似文献   

16.
Effects of the kind and concentration of stabilizers on the nonspherical shape of polystyrene (PS)/poly(methyl methacrylate) (PMMA) composite particles prepared by release of toluene from PS/PMMA/toluene droplets dispersed in stabilizer aqueous solution were examined. In the case of poly(vinyl alcohol), the surfaces of the obtained particles always had a single dimple. In the case of sodium dodecyl sulfate (SDS), the shapes of the composite particles changed from the dimple, via acorn, to spherical with increasing SDS concentration. It was clarified that the dimple and acorn shapes of the PS/PMMA composite particles were caused by contraction of the PS phase after hardening of the PMMA phase in excentered core-shell and hemisphere morphologies, respectively, which were formed by phase separation during toluene evaporation.  相似文献   

17.
In this work, we present preparation and basic applications of lipid-bilayer-enclosed picoliter volumes (microcontainers) of solutions of poly(N-isopropylacrylamide) (PNIPAAm). Giant unilamellar vesicles (GUVs) were prepared from phospholipids using a standard swelling procedure and subsequently surface immobilized. Clear, slightly viscous solutions of PNIPAAm of varying concentration in aqueous buffer were directly pressure-microinjected into the GUVs, using a submicrometer-sized, pointed capillary. The GUV was subjected to changing temperature over a 21-40 degrees C range. The typical phase transition of the polymeric material upon heating and cooling across the lower critical solution temperature was followed using optical microscopy and shown to be reversible over multiple sequential heating/cooling cycles without compromising the integrity of the GUV membrane. Fluorescent, carboxylic acid modified 200 nm latex beads, co-injected with the PNIPAAm solution, were temperature-reversibly immobilized during the phase transition, practically freezing the Brownian motion of the entrapped particles in the volume. Furthermore, a co-injected water soluble fluorescent polysaccharide-dye conjugate was shown not to migrate from the aqueous phase into the hydrophobic polymer part upon heating, whereas the fluorescent beads were completely but reversibly immobilized in the hydrophobic domains of dense polymer agglomerates. The system reported here provides a feasible method for the reversible stabilization and solidification of GUV interior volumes, e.g., as a micrometer-sized model system for controlled drug release.  相似文献   

18.
In order to investigate experimentally inaccessible, molecular-level detail regarding interleaflet interaction in membranes, we have run an extensive series of coarse-grained molecular dynamics simulations of phase separated lipid bilayers. The simulations are motivated by differences in lipid and cholesterol composition in the inner and outer leaflets of biological membranes. Over the past several years, this phenomenon has inspired a series of experiments in model membrane systems which have explored the effects of lipid compositional asymmetry in the two leaflets. The simulations are directed at understanding one potential consequence of compositional asymmetry, that being regions of bilayers where liquid-ordered (L(o)) domains in one leaflet are opposite liquid-disordered (L(d)) domains in the other leaflet (phase asymmetry). The simulated bilayers are of two sorts: 1) Compositionally symmetric leaflets where each of the two leaflets contains an identical, phase separated (L(o)/L(d)) mixture of cholesterol, saturated and unsaturated phospholipid; and 2) Compositionally asymmetric leaflets, where one leaflet contains a phase separated (L(o)/L(d)) mixture while the other contains only unsaturated lipid, which on its own would be in the L(d) phase. In addition, we have run simulations where the lengths of the saturated lipid chains as well as the mole ratios of the three lipid components are varied. Collectively, we report on three types of interleaflet coupling within a bilayer. First, we show the effects of compositional asymmetry on acyl chain tilt and order, lipid rotational dynamics, and lateral diffusion in regions of leaflets that are opposite L(o) domains. Second, we show substantial effects of compositional asymmetry on local bilayer curvature, with the conclusion that phase separated leaflets resist curvature, while inducing large degrees of curvature in an opposing L(d) leaflet. Finally, in compositionally symmetric, phase separated bilayers, we find phase asymmetry (domain antiregistration) between the two leaflets occurs as a consequence of mismatched acyl chain-lengths in the saturated and unsaturated lipids.  相似文献   

19.
The adsorption of lipids onto spherical polymer colloids led to original assemblies presenting structural characteristics adjustable with the lipid formulation. The model system selected for this work involved sulfate-charged poly(styrene) submicrometer particles and zwitterionic/cationic lipid mixtures composed of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-dipalmitoyl-3-trimethylammonium-propane (DPTAP). According to the theoretical packing parameter calculations and whatever the DPPC/DPTAP ratio, the two lipids self-assembled in aqueous media to spontaneously form vesicles. A phase transition investigation of these DPPC/DPTAP vesicles using differential scanning calorimetry revealed particular thermotropic behaviors, especially for the equimolar formulation where very strong interactions occurred between DPPC and DPTAP. Furthermore, the coating of the lipids around particles was monitored versus DPPC/DPTAP ratio by means of numerous appropriate techniques. First, a thermogravimetric analysis, providing decomposition profiles of lipid/polymer particle assemblies with temperature, was atypically carried out for such nanostructures. Then, 1H NMR spectroscopy enabled the exact DPPC/DPTAP molar ratios adsorbed on particles to be determined by differentiating both lipids. Subsequently, it also pointed out the major role of electrostatic interactions as driving forces in the assembly elaboration process. In addition to these findings, quantitative information has been collected and correlated with chemical lipid assays and permitted the statement of a lipid bilayer coverage for the assemblies prepared in water, in agreement with quasi-elastic light scattering data.  相似文献   

20.
The thickening properties and association behavior of aqueous solutions of HHM-HEC (hydrophobically-hydrophilically modified hydroxyethyl cellulose) with various hydrophobic and hydrophilic substitution degrees were investigated. The HHM-HEC was used as an oil-in-water emulsifier and stable compositional regions were investigated as a function of polymer concentration and substitution degree. The viscosity of aqueous solutions of HHM-HEC increased drastically at lower concentration for HHM-HEC with a higher hydrophobic/hydrophilic substitution ratio. The intensity ratio of the first and third vibrational bands of pyrene (I(1)/I(3)) decreased with the increase of HHM-HEC concentration and the I(1)/I(3) reached a lower plateau at a lower concentration for HHM-HEC with a higher hydrophobic/hydrophilic substitution ratio. The concentration ranges of HHM-HEC solutions which stabilize O/W emulsions differ by the hydrophobic/hydrophilic substitution ratio. However the viscosity ranges of these HHM-HEC solutions were almost the same regardless of the hydrophobic/hydrophilic substitution ratio. At the suitable concentration range for emulsification, HHM-HEC networks have two properties: (1) oil particle retention capacity and (2) laxation which can trap emulsified particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号