首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
粘弹性饱和土体中半封闭圆形隧洞的动力响应分析   总被引:5,自引:0,他引:5  
基于Biot波动方程,研究分析了粘弹性饱和土体中半封闭圆形隧洞的动力响应问题.假定衬砌材料为多孔介质,引入了更符合工程实际的半封闭边界条件.通过引入势函数,在Laplace变换域中得到隧洞边界上作用轴对称荷载和流体压力条件下应力、位移和超孔隙水压力的解答.利用Laplace数值逆变换得到时域中的解,分析了隧洞边界的半透水特性对隧洞动力响应问题的影响,结果表明:隧洞边界的半透水特性对应力、位移场的变化和超孔隙水压力的消散有很大的影响,透水和不透水下条件的解仅是本文的两个特例.  相似文献   

2.
In this paper the Laplace transform method is combined with Padé approximations to solve linear viscoelastic problems. This approach allows to avoid the usual difficulties of original function determination. An algorithm is given to find solution with arbitrary precision. As an example the solution for problem of viscoelastic orthotropic half-plane stress state under concentrated normal force is given.  相似文献   

3.
Some composite materials are constructed of two dissimilar half-planes bonded by a nonhomogeneous elastic layer. In the present study, a crack is situated at the interface between the upper half-plane and the bonding layer of such a material, and another crack is located at the interface between the lower half-plane and the bonding layer. The material properties of the bonding layer vary continuously from those of the lower half-plane to those of the upper half-plane. Incoming shock stress waves impinge upon the two interface cracks normal to their surfaces. Fourier transformations were used to reduce the boundary conditions for the cracks to two pairs of dual integral equations in the Laplace domain. To solve these equations, the differences in the crack surface displacements were expanded in a series of functions that are zero-valued outside the cracks. The unknown coefficients in the series were solved using the Schmidt method so as to satisfy the conditions inside the cracks. The stress intensity factors were defined in the Laplace domain and were inverted numerically to physical space. Dynamic stress intensity factors were calculated numerically for selected crack configurations.  相似文献   

4.
The wave propagation problem for a largely arbitrary anti-plane displacement discontinuity imposed along a line perpendicular to the surface of a stress-free linearly viscoelastic half-plane is considered. The general Laplace transform solution is obtained and then inverted for the case of a screw dislocation moving at an arbitrary speed in a Maxwell material. It is shown that the material viscoelasticity alters the coefficient of the dislocation edge stress singularity and damps the surface displacements from the elastic values. The surface damping increases with time, distance from the dislocation path and dislocation speed, whether sub- or supersonic.  相似文献   

5.
由运动内热源引起的磁热黏弹性问题的研究   总被引:1,自引:1,他引:0  
在具有两个热松弛时间的广义热弹性理论下, 研究了处于定常磁场中的均布各向同性黏弹性半空间中, 由以均匀速度运动的线热源引起的瞬态波问题. 通过引入黏弹性向量势和热黏弹性标量势,问题退化为求解3个偏微分方程. 运用Laplace变换(对时间变量)和Fourier变换(对一个空间变量), 得到了变换域内应力和位移的解析表达式. 采用级数展开法, 得到了边界位移在小时间范围内的近似解, 给出了解的近似范围, 同时还研究了两种特例:(1)热源静止不动, (2)不考虑热松弛时间的影响. 最后对于丙烯酸塑料介质给出了数值结果.  相似文献   

6.
I.lntroducti0nThedynamicresponseofviscoelasticstructuresisoneofimportantresearchdirectionsinsolidmechanics.BecauseofthecompIexityoftheconstitutiverelations0fviscoeIasticmaterials,theproblemofsolvingthedynamicresponseisverydifflcult.Therearesomeavailablenu…  相似文献   

7.
The transient dynamic coupled-thermoelasticity problem of a half-space under the action of a buried thermal/mechanical source is analyzed here. This situation aims primarily at modeling underground explosions and impulsively applied heat loadings near a boundary. Also, the present basic analysis may yield the necessary field quantities required to apply the Boundary Element Method in more complicated thermoelastodynamic problems involving half-plane domains. A material response for the half-space predicted by Biots thermoelasticity theory is assumed in an effort to give a formulation of the problem as general as possible (within the confines of a linear theory) . The loading consists of a concentrated thermal source and a concentrated force (mechanical source) having arbitrary direction with respect to the half-plane surface. Both thermal and mechanical line sources are situated at the same location in a fixed distance from the surface. Plane-strain conditions are assumed to prevail. Our problem can be viewed as a generalization of the classical Nakano–Lapwood–Garvin problem and its recent versions due to Payton (1968) and Tsai and Ma (1991) . The initial/boundary value problem is attacked with one- and two-sided Laplace transforms to suppress, respectively, the time variable and the horizontal space variable. A 9×9 system of linear equations arises in the double transformed domain and its exact solution is obtained by employing a program of symbolic manipulations. From this solution the two-sided Laplace transform inversion is then obtained exactly through contour integration. The one-sided Laplace transform inversion for the vertical displacement at the surface is obtained here asymptotically for long times and numerically for short times.  相似文献   

8.
对边界几何形状、位置随时间变化的变边界结构,给出了用复变函数求解粘弹问题的解析方法.文中用拉普拉斯变换结合平面弹性复变方法,对内外边界变化时粘弹性轴对称问题进行求解.引入两个与时间、空间相关的解析函数,给出了变边界情况下应力、位移以及边界条件与解析函数的关系.当解析函数形式部分确定,则可用边界条件求解其中与时间相关的待定函数.求解待定函数的方程一般情况下为一系列积分方程,特殊情况可求得解析解.对轴对称问题中应力边值问题、位移边值问题以及混合边值问题,分别利用边界条件求得相关系数,从而得到了应力与位移的解析表达.当取Boltzmann粘弹模型时,进行不同边值问题的分析.分析显示,应力、位移的形态与大小均与边界变化过程相关,与固定边界粘弹性问题有较大不同.本文解答可用于粘弹性轴对称问题内外边界任意变化及各种边值问题的力学分析.此外,该法可进一步进行荷载非对称、复杂孔型变边界问题的求解.  相似文献   

9.
In this study, a new Green??s function and a new Green-type integral formula for a 3D boundary value problem (BVP) in thermoelastostatics for a quarter-space are derived in closed form. On the boundary half-planes, twice mixed homogeneous mechanical boundary conditions are given. One boundary half-plane is free of loadings and the normal displacements and the tangential stresses are zero on the other one. The thermoelastic displacements are subjected by a heat source applied in the inner points of the quarter-space and by mixed non-homogeneous boundary heat conditions. On one of the boundary half-plane, the temperature is prescribed and the heat flux is given on the other one. When the thermoelastic Green??s function is derived, the thermoelastic displacements are generated by an inner unit point heat source, described by ??-Dirac??s function. All results are obtained in elementary functions that are formulated in a special theorem. As a particular case, when one of the boundary half-plane of the quarter-space is placed at infinity, we obtain the respective results for half-space. Exact solutions in elementary functions for two particular BVPs for a thermoelastic quarter-space and their graphical presentations are included. They demonstrate how to apply the obtained Green-type integral formula as well as the derived influence functions of an inner unit point body force on volume dilatation to solve particular BVPs of thermoelasticity. In addition, advantages of the obtained results and possibilities of the proposed method to derive new Green??s functions and new Green-type integral formulae not for quarter-space only, but also for any canonical Cartesian domain are also discussed.  相似文献   

10.
The fractional calculus approach is introduced into the seepage mechanics. A three-dimensional relaxation model of viscoelastic fluid is built. The models based on four boundary conditions of exact solution in Laplace space for some unsteady flows in an infinite reservoir is obtained by using the Laplace transform and Fourier sine and cosine integral transform. The pressure transient behavior of non-Newtonian viscoelastic fluid is studied by using Stehfest method of the numerical Laplace transform inversion and Gauss–Laguerre numerical integral formulae. The viscoelastic fluid is very sensitive to the order of the fractional derivative. The change rules of pressure are discussed when the parameters of the models change. The plots of type pressure curves are given, and the results can be provided to theoretical basis and well-test method for oil field.  相似文献   

11.
The stability of a viscoelastic plate strip, subjected to an axial load with the Kelvin–Voigt fractional order constitutive relationship is studied. Based on the classical plate theory, the structural formulation of the plate is obtained by using the Newton’s second law and the aerodynamic force due to the fluid flow is evaluated by piston theory. The Galerkin method is employed to discretize the equation of motion into a set of ordinary differential equations. To determine the stability margin of plate the obtained set of ordinary differential equations are solved using the Laplace transform method. The effects of variation of the governing parameters such as axial force, retardation time, fractional order and boundary conditions on the stability margin of fractional viscoelastic panel are investigated and finally some conclusions are outlined.  相似文献   

12.
A new method is developed to solve Biot's consolidation of a finite soil layer in the cylindrical coordinate system. Based on the governing equations of Biot's consolidation and the technique of Laplace transform, Fourier expansions and Hankel transform with respect to time t, coordinate θ and coordinate r, respectively, a relationship of displacements, stresses, excess pore water pressure and flux is established between the ground surface (z = 0) and an arbitrary depth z in the Laplace and Hankel transform domain. By referring to proper boundary conditions of the finite soil layer, the solutions for displacements, stresses, excess pore water pressure and flux of any point in the transform domain can be obtained. The actual solutions in the physical domain can be acquired by inverting the Laplace and the Hankel transforms.  相似文献   

13.
In this work, the generalized thermoelastic solutions with bounded boundaries for the transient shock problem are proposed by an asymptotic method. The governing equations are taken in the context of the generalized thermoelasticity with one relaxation time (L–S theory). The general solutions for any set of boundary conditions are obtained in the physical domain by the Laplace transform techniques. The corresponding asymptotic solutions for a thin plate with finite thickness, subjected to different sudden temperature rises in its two boundaries, are obtained by means of the limit theorem of Laplace transform. In the context of these asymptotic solutions, two specific problems with different boundary conditions have been conducted. The distributions of displacement, temperature and stresses, as well as the propagations, intersections and reflections of two elastic waves, named as thermoelastic wave and thermal wave separately, are obtained and plotted. These results are agreed with the results obtained in the existing literatures.  相似文献   

14.
This paper investigates transient stresses around a cylindrical crack in an infinite elastic medium subject to impact loads. Incoming stress waves resulting from the impact load impinge on the crack in a direction perpendicular to the crack axis. In the Laplace transform domain, by means of the Fourier transform technique, the mixed boundary value equations with respect to stresses and displacements were reduced to two sets of dual integral equations. To solve the equations, the differences in the crack surface displacements were expanded in a series of functions that are zero outside the crack. The boundary conditions for the crack were satisfied by means of the Schmidt method. Stress intensity factors were defined in the Laplace transform domain and were numerically inverted to physical space. Numerical calculations were carried out for the dynamic stress intensity factors corresponding to some typical shapes assumed for the cylindrical crack.  相似文献   

15.
The semi-analytical solutions to Fredlund and Hasan's one-dimensional(1 D)consolidation for unsaturated soils with a semi-permeable drainage boundary are presented. Two variables are introduced to transform the two coupled governing equations of pore-water and pore-air pressures into an equivalent set of partial differential equations(PDFs), which are easily solved by the Laplace transform method. Then, the pore-water pressure, pore-air pressure, and soil settlement are obtained in the Laplace domain. The Crump method is adopted to perform the inverse Laplace transform in order to obtain the semi-analytical solutions in the time domain. It is shown that the proposed solutions are more applicable to various types of boundary conditions and agree well with the existing solutions from the literature. Several numerical examples are provided to investigate the consolidation behavior of an unsaturated single-layer soil with single, double, mixed, and semi-permeable drainage boundaries. The changes in the pore-air and pore-water pressures and the soil settlement with the time factor at different values of the semi-permeable drainage boundary parameters are illustrated. In addition, parametric studies are conducted on the pore-air and pore-water pressures at different ratios(the air permeability coefficient to the water permeability coefficient) and depths.  相似文献   

16.
The transient analysis of viscoelastic helical rods subject to time-dependent loads are examined in the Laplace domain. The governing equations for naturally twisted and curved spatial rods obtained using the Timoshenko beam theory are rewritten for cylindrical helical rods. The curvature of the rod axis, effect of rotary inertia and, shear and axial deformations are considered in the formulation. The material of the rod is assumed to be homogeneous, isotropic and linear viscoelastic. The viscoelastic constitutive equations are written in the Boltzmann–Volterra form. Ordinary differential equations in canonical form obtained in the Laplace domain are solved numerically using the complementary functions method to calculate the dynamic stiffness matrix of the problem. The solutions obtained are transformed to the real space using an appropriate numerical inverse Laplace transform method. Numerical results for quasi-static and dynamic response of viscoelastic models are presented in the form of graphics.  相似文献   

17.
The problem of the determination of Green’s function in conduction for a rectilinearly anisotropic solid with an exponential grading along a certain direction is studied. Domains of an unbounded space and a half-space, either three-dimensional or two-dimensional, are considered. Along the boundary of the domain, homogeneous boundary conditions of the first and second kinds are imposed. We find interestingly that, under this specific type of grading, the Green’s functions permit an algebraic decomposition, which will in turn greatly simplify the formulation. The method of Fourier transform is employed for the Green’s function for a half-space or a half-plane. Although the derivation process is quite tedious, we show analytically that the inverse transform can be found exactly and their resulting expressions are surprisingly neat and compact. In addition, both steady-state and transient-state field solutions are considered. By taking Laplace transform with respect to the time variable, we show that the mathematical frameworks for the steady-state and transient-state Green’s functions are entirely analogous. Thereby, the transient-state Green’s function is readily obtained by taking Laplace inverse transform back to the time domain. These derived fundamental solutions will serve as benchmark results for modeling some inhomogeneous materials. In the absence of grading term, we have verified analytically that our solutions agree exactly with previously known Green’s functions for homogeneous media.  相似文献   

18.
Summary  Transient stresses around two parallel cracks in an infinite elastic medium are investigated in the present paper. The shape of the cracks is assumed to be square. Incoming shock stress waves impinge upon the two cracks normal to tzheir surfaces. The mixed boundary value equations with respect to stresses and displacements are reduced to two sets of dual integral equations in the Laplace transform domain using the Fourier transform technique. These equations are solved by expanding the differences in the crack surface displacements in a double series of a function that is equal to zero outside the cracks. Unknown coefficients in the series are calculated using the Schmidt method. Stress intensity factors defined in the Laplace transform domain are inverted numerically to the physical space. Numerical calculations are carried out for transient dynamic stress intensity factors under the assumption that the shape of the upper crack is identical to that of the lower crack. Received 2 February 2000; accepted for publication 10 May 2000  相似文献   

19.
General exact solutions in terms of wavelet expansion are obtained for multiterm time-fractional difusion-wave equations with Robin type boundary conditions. By proposing a new method of integral transform for solving boundary value problems, such fractional partial diferential equations are converted into time-fractional ordinary diferential equations, which are further reduced to algebraic equations by using the Laplace transform. Then, with a wavelet-based exact formula of Laplace inversion, the resulting exact solutions in the Laplace transform domain are reversed to the time-space domain. Three examples of wave-difusion problems are given to validate the proposed analytical method.  相似文献   

20.
General exact solutions in terms of wavelet expansion are obtained for multi- term time-fractional diffusion-wave equations with Robin type boundary conditions. By proposing a new method of integral transform for solving boundary value problems, such fractional partial differential equations are converted into time-fractional ordinary differ- ential equations, which are further reduced to algebraic equations by using the Laplace transform. Then, with a wavelet-based exact formula of Laplace inversion, the resulting exact solutions in the Laplace transform domain are reversed to the time-space domain. Three examples of wave-diffusion problems are given to validate the proposed analytical method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号