首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Certain sheet metal alloys of industrial interest show a significant increase in ductility, over conventional forming methods, when high speed electromagnetic processes are used. The present work models the necking localization of a metal sheet during an electromagnetic process and examines the factors that influence this process. A Marciniak–Kuczynski “weak band” model is used to predict the onset of necking of a thin sheet under plane stress, an idealization of the local conditions in a thin sheet subjected to unconstrained electromagnetic loading. It is found that electromagnetic forming (EMF) increases ductility over quasistatic techniques due to the material’s strain-rate sensitivity, with ductility increasing monotonically with applied strain rates. The electric current also increases onset of necking strains, but the details depend on thermal sensitivity and temperature-dependence of the strain-rate sensitivity exponent. Given the insensitivity of the results to actual strain profiles, this local type analysis provides a useful tool that can be used for ductility predictions involving EMF processes.  相似文献   

2.
The electromagnetic forming (EMF) process is an attractive manufacturing technique, which uses electromagnetic (Lorentz) body forces to fabricate metallic parts. One of the many advantages of EMF is the considerable ductility increase observed in several metals, with aluminum featuring prominently among them. The quantitative explanation of this phenomenon is the primary motivation of this work.To study the ductility increase due to EMF, an aluminum ring is placed outside a fixed coil, which is connected to a capacitor. Upon the capacitor's discharge, the time varying current in the coil induces a larger current in the ring specimen and the resulting Lorentz forces make it expand. The coupled coil-ring electromagnetic and thermomechanical problem is solved, using an experimentally obtained constitutive model for a particular aluminum alloy. Our results show that for realistic imperfections, the EMF ring starts necking at strains about six times larger than its static counterpart, as observed experimentally. This study establishes the importance of solving the fully coupled electromagnetic and thermomechanical problem and provides insight on how different constitutive parameters influence ductility in an EMF process.  相似文献   

3.
A technique is proposed for mathematical and numerical modeling of thermomechanical processes in electrically conductive bodies subjected to an external electromagnetic field. The initial relations for the determination of the electromagnetic field are the Maxwell equations. The stress and strain states of the body are described using the equations of nonisothermal elastoplasticity. The model takes into account the coupling of the electromagnetic and thermal fields. All physical and mechanical parameters of the material depend on temperature. The process of high-temperature induction treatment of a ferromagnetic cylinder is considered as an example __________ Translated from Prikladnaya Mekhanika, Vol. 41, No. 12, pp. 13–25, December 2005.  相似文献   

4.
5.
正交各向异性金属板料的成形极限   总被引:6,自引:0,他引:6  
1993年希尔提出了一个适用于各向异性材料的屈服准则,该文运用该屈服准则和马辛尼克-库祖斯基假设,建立了能够确定正交各是性金属料成形极限的控制方法半数值求解,分析了不同材料参数对成形极限图的影响。  相似文献   

6.
采用大变形刚粘塑性有限元法模拟超塑性恒压轴对称充模胀形过程、分析了模具几何参数及材料参数对胀形过程中材料的流变行为、胀形制许厚度分布和成形时间的影响规律。给出了质点的流动轨迹、不同时刻制件的剖面形状及应力、应变分布;基于修正的Gurson粘塑性势推导了内部空洞体积分数累积增大模型并据此进行了变形-损伤耦合计算.  相似文献   

7.
This paper describes a procedure for the mathematical and numerical modeling of the thermomechanical behavior of electrically conducting solid bodies exposed to an external electromagnetic field. The constitutive equations for the electromagnetic field are the Maxwell equations written for the region of the solid body and the ambient medium. The stress-strain state of the solid is described using the relations for nonisothermal elastoplastic flow. The effects of the electromagnetic field on the heat-transfer and deformation processes are taken into account via heat release and ponderomotive forces, respectively. The relations between the electric and magnetic inductions and the corresponding field strengths are considered nonlinear. All physicomechanical parameters of the body material are temperature dependent.__________Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 46, No. 5, pp. 14–26, September–October, 2005.  相似文献   

8.
Particle bridge formation during the flow of a liquid with particles through a porous material is a fouling mechanism that can block the pores and, hence, decrease the permeability of the material. Ultrasonic irradiation of the material is a cleaning method that can restore the permeability. We make a numerical study of this cleaning method using the lattice-Boltzmann method. We start from a pore blocked by two spherical particles attached to the pore wall by colloidal adhesion forces, thus forming a particle bridge. Next we calculate the hydrodynamic force exerted by a high-frequency acoustic wave on the two particles. By comparing the hydrodynamic force and the adhesion force we investigate, whether the particle bridge will be removed by the ultrasonic irradiation. A sensitivity study is carried out to investigate the influence of some relevant parameters, such as the acoustic wave amplitude, the acoustic frequency, the fluid flow velocity and the ratio of particle diameter and pore diameter. An upscaling procedure is applied to translate the microscopic results for the removal of the particles at the pore level to the permeability improvement of the material at the macroscopic level. A comparison is made between numerical results and experimental data. The agreement is reasonable.  相似文献   

9.
《力学快报》2023,13(3):100450
This work applies concepts of artificial neural networks to identify the parameters of a mathematical model based on phase fields for damage and fracture. Damage mechanics is the part of the continuum mechanics that models the effects of micro-defect formation using state variables at the macroscopic level. The equations that define the model are derived from fundamental laws of physics and provide important relationships among state variables. Simulations using the model considered in this work produce good qualitative and quantitative results, but many parameters must be adjusted to reproduce certain material behavior. The identification of model parameters is considered by solving an inverse problem that uses pseudo-experimental data to find the best values that fit the data. We apply physics informed neural network and combine some classical estimation methods to identify the material parameters that appear in the damage equation of the model. Our strategy consists of a neural network that acts as an approximating function of the damage evolution with output regularized using the residue of the differential equation. Three stages of optimization seek the best possible values for the neural network and the material parameters. The training alternates between the fitting of only the pseudo-experimental data or the total loss that includes the regularizing terms. We test the robustness of the method to noisy data and its generalization capabilities using a simple physical case for the damage model. This procedure deals better with noisy data in comparison with a more standard PDE-constrained optimization method, and it also provides good approximations of the material parameters and the evolution of damage.  相似文献   

10.
In order to accurately simulate the thermoforming or blowmolding manufacturing processes using finite elements or some other suitable computational procedure, it is necessary to know the constitutive behavior of the material being formed. In this study, an apparatus was developed to measure the large deformation behavior of thermoplastic sheet at elevated temperatures. The specifications of the test apparatus, as well as sample data measurements are presented. Biaxial viscoelastic material properities of ABS sheets were determined at forming temperatures. In particular, the nonlinear stress-strain relationship of the material was experimentally measured at various temperatures above the glass transition temperature and the data correlated to a time and strain separable viscoelastic material model. The results of this study show that it is possible to recover the underlying nonlinear elastic response of heated ABS sheet material, at finite strains, from tests exhibiting significant viscoelastic behavior.  相似文献   

11.
The increased interest in lightweight materials for automotive structures has also lead to a search for efficient forming methods that suit these materials. One attractive concept is to use hydroforming of aluminum tubes. The advantages of this forming method includes better tolerances, decreased number of parts and an increased range of forming options. By using FE simulations, the process can be optimized to reduce the risk for failure, i.e. bursting or wrinkling. However, extruded aluminum is highly anisotropic and it is crucial that the material model used for simulations is able to accurately describe this behavior. Also, tube hydroforming occurs predominantly in a biaxial stress state which should be considered in the material testing, where uniaxial tests are used extensively in the industry today. The present study accentuates the need for improved constitutive models. It is shown that a material model, which accurately describes the anisotropic behavior of aluminum tubes, can be obtained from simple and robust experiments.  相似文献   

12.
It is essential to model the Bauschinger effect correctly for sheet metal forming process simulation and subsequent springback prediction when material points are subjected to cyclic loading conditions. The combined nonlinear hardening model for time independent cyclic plasticity, proposed by Chaboche and co-workers, is examined and a simple modification is suggested for the isotropic part of the hardening rule to utilize the conventional tensile test data directly. This modification is useful for the materials whose reverse loading curves saturate to the monotonic loading curve. In addition, an anisotropic nonlinear kinematic hardening model (ANK model) is proposed in an attempt to represent the Bauschinger effect more realistically. Possible offset in flow stress is modeled by treating the back stress evolution during reverse loading differently from the initial loading. This strategy coupled with the modified isotropic hardening rule seems to provide a way to model the Bauschinger effect consistently over multiple cycles. Two types of auto-body alloys are examined in this paper. Associated material parameters are determined by employing available tension-compression test data and multi-cycle bend test data. A developed finite element formulation is applied to analyze simple validation type of problems. The cyclic stress–strain curves generated from the proposed ANK model match remarkably well with measured data.  相似文献   

13.
分析了目前膨胀环实验技术的研究现状,介绍了本课题组搭建的电磁膨胀环和爆炸膨胀环实验平台,着重介绍了其原理和主要性能参数。爆炸膨胀环实验中提出了一种新的爆炸丝起爆方式,电磁膨胀环平台中使用了一种先进的三电极开关实现电流截断。膨胀环的传统研究方向为材料的断裂行为、破片的统计规律、材料的动态拉伸本构等,本课题组将其拓展到材料在冲击拉伸加载下的损伤演化规律、裂纹的扩展速度等研究领域。本文对膨胀环平台的主要应用研究进行了一个较全面系统的总结概括,并指出今后膨胀环平台应用研究的主要方向。  相似文献   

14.
分析了基于有限元方法的超材料电磁性能仿真分析结果对有限元网格的依赖性.通过对仿真结果的分析,发现基于S参数的材料性能参数反演结果对S参数的计算准确度的依赖性巨大,特别是处在谐振频域的S参数误差会导致等效电磁参数的性态误差.针对基于求解频率的网格自适应技术对远离求解频率的谐振频域的分析结果的准确度改善不够这个问题,需要确定合适的求解频率来执行网格自适应.提出了一种改进电磁性能仿真分析准确度的方法,其基本思想是首先给定一个初始的求解频率值,根据Kramers-Kronig关系反演等效电磁参数,进而获得谐振频率的近似值,并把此值作为求解频率来实现网格自适应以获得合适的网格剖分,最后经扫频获得S参数并进行等效电磁参数的反演.数值结果表明,该方法可有效提高仿真分析和参数反演的准确度.  相似文献   

15.
贾虎  张瑞  黎棚武 《力学学报》2021,53(8):2214-2224
离子液体是一类可调控、多功能的绿色环保材料, 具有良好的电磁场响应, 有望应用于调控水驱油路径. 在分析离子液体在毛细管中电磁场响应机理的基础上, 建立了电磁场?渗流场耦合作用下离子液体多孔介质流动模型. 通过理论推导与数值分析发现: 电磁场?渗流场耦合作用下毛细管流量大小主要由离子液体电导率与黏度的比值(内因)、电磁场强度与压力梯度(外因)两方面决定; 电磁场产生的洛伦兹力对离子液体施加一个电磁驱动压强, 形成一个类似压力梯度的电磁驱动等效压力梯度, 从而改变离子液体的流量, 当电磁场强度为2.0 × 104 V/m·T时, 电磁场在电导率为0.5 S/m的离子液体上可形成10 kPa/m电磁驱动等效压力梯度. 通过调整电磁场方向即可控制离子液体在多孔介质中的流动方向, 解决常规注水利用压力差难以控制流动路径的难题, 为离子液体智能驱油提供理论依据, 且电磁场产生的热效应会影响离子液体的流动能力及潜在驱油效率.   相似文献   

16.
考虑到第一代高温超导带材多场特性测试系统采用液氮浸泡的方式进行材料冷却,这极大地限制了其应用范围。另外,封闭的杜瓦结构对于超导材料在变形过程中的电磁特征难以实现有效观测,这成为弄清超导材料变形导致其载流能力下降物理机制的主要瓶颈。为此,我们采用制冷机直接冷却方式,获得了最低6.59K的样品温度。采用PID温度控制,实现了从6.59K至300K样品温度的精确控制,控温精度为0.1K。采用外置式的加载装置,通过机械传动实现对试样的准静态拉伸,其最大拉伸应变可达20%。自行设计了一种高温超导导线,采用制冷机一级冷头直接冷却,实现了密闭杜瓦容器中最大可达600A的电流输入。最后,在杜瓦瓶设置直径50mm的光学观察窗,采用磁光镜像的方法实现了超导材料电磁特性的原位观测。  相似文献   

17.
在分析纵向磁场能够增强聚能射流稳定性的基础上,根据聚能射流的运动方程以及聚能射流的塑性失稳条件,推导得到了聚能射流在纵向磁场中的极限拉伸系数计算公式,并计算了有、无磁场情况下极限拉伸系数的比值。通过两种炸高下的实验研究对理论模型进行了验证。结果表明:由于磁场的存在而引起的电磁力抑制了聚能射流颈缩的发展,进而延长了射流成型的惯性拉伸阶段,最终使聚能射流在磁场中的极限拉伸系数在一定程度上得到了增加;理论和实验所得结果吻合较好。运用所建立模型可以较准确地反映磁场对聚能射流极限拉伸系数的影响。  相似文献   

18.
In recent decades, many phase change processes in metals have been optimized using traveling magnetic fields due to a better understanding of their electromagnetic impact in such applications. In this paper, numerical and experimental study of the effect of traveling magnetic field on the solidification process was evaluated. A three-dimensional numerical model based on the multi-domain method was used to analyze the process of gallium horizontal solidification under the electromagnetic impact in a laboratory-size rectangular cavity. A linear inductor creating traveling magnetic field was designed and built for appropriate measurements and validation the calculations. The analysis was focused on the influence of the ratio between the applied electromagnetic forces and natural convective forces on the solidification front location and shape and on the velocity field. Since the overall electromagnetic force impact on the melt reduced during the solidification, when the melt area was converting into a solid, a new approach to control the solidification parameters was analyzed. In this approach, the value of electromagnetic force acting on the remaining melt during the process was maintained. The main result is the development and improvement of an effective tool for the analysis of direct solidification parameters.The experimental setup included an ultrasonic Doppler velocimeter (UDV) for noninvasive measurements of the velocities in the liquid part of the metal and the liquid-solid interface position, its profile and displacement. All important characteristics of the process were measured, and the results of computations agreed well enough with experimentally obtained data.  相似文献   

19.
For parameter identification a distance function between the measured and the simulated data has to be minimized. Therefore, the influence of three different norms used in the definition of such a distance function is investigated. The nonlinear optimization problem is solved using a modified random search algorithm originally proposed by Price (1978). Next a stochastic model for the generation of artificial test data is presented. This model is used for a stochastic simulation of test data (constant strain rate tension with relaxation and creep). From these artificial data the material parameters of the model of Chan, Bodner and Lindholm are identified. To measure the quality of the identified material parameters their mean values and empirical standard deviations are computed. Furthermore, the coefficients of the empirical correlation matrix for the material parameters are computed. The model responses for tensile tests with the parameter vector generated from all tests and with the estimated parameters (from stochastic simulations) differ not considerably. However, for the creep tests the different parameter estimations lead to quite different model responses. Received October 22, 1999  相似文献   

20.
Peen forming is commonly used on aluminium alloys in the aerospace industry for wing skin shaping. Numerous analytical, numerical, and experimental studies have been made to better understand the effects of various peening parameters on the final material state and to predict deformed shapes, but conclusions were often limited to trends. The purpose of this study is therefore to develop and verify experimentally quantitative numerical tools for peen forming applications by studying the simple case of peening an Almen-sized AA-2024 aluminium strip in an Almen holder. The first step consisted in improving an existing random dynamic model by determining optimal dimensions. The AA-2024 target mechanical behaviour was characterized experimentally and a combined isotropic-kinematic hardening law was selected to model the material behaviour. The dynamic impact model and material constitutive law provided good prediction of peening-induced stresses in thick AA-2024 for two shot velocities. The sequence-sensitive aspect of the forming process was also investigated and a new shell-based finite element model was proposed. Numerical and experimental results for three shot velocities were compared to evaluate the validity of this numerical simulation method and promising agreement was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号