首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
对边界几何形状、位置随时间变化的变边界结构,给出了用复变函数求解粘弹问题的解析方法.文中用拉普拉斯变换结合平面弹性复变方法,对内外边界变化时粘弹性轴对称问题进行求解.引入两个与时间、空间相关的解析函数,给出了变边界情况下应力、位移以及边界条件与解析函数的关系.当解析函数形式部分确定,则可用边界条件求解其中与时间相关的待定函数.求解待定函数的方程一般情况下为一系列积分方程,特殊情况可求得解析解.对轴对称问题中应力边值问题、位移边值问题以及混合边值问题,分别利用边界条件求得相关系数,从而得到了应力与位移的解析表达.当取Boltzmann粘弹模型时,进行不同边值问题的分析.分析显示,应力、位移的形态与大小均与边界变化过程相关,与固定边界粘弹性问题有较大不同.本文解答可用于粘弹性轴对称问题内外边界任意变化及各种边值问题的力学分析.此外,该法可进一步进行荷载非对称、复杂孔型变边界问题的求解.  相似文献   

2.
A new formulation is described which combines the most robust attributes of the volume finite element and surface integral equation approaches to electromagnetic boundary value solutions. The result is a numerical technique which may be applied to scattering problems involving configurations having metallic surfaces and inhomogeneous penetrable material situated in open spatial regions. This is accomplished by way of coupling internal region finite element modal field solutions to equivalent currents on the surrounding boundary surface through an appropriate surface integral equation. The method is demonstrated for the special case of scattering by axisymmetric inhomogeneous penetrable objects. Example numerical calculations are presented for validation of the procedure and potential problem areas are discussed.  相似文献   

3.
During the motion of a partially ionized gas in magnetohydrodynamic channels the distribution of the electrical conductivity is usually inhomogeneous due to the cooling of the plasma near the electrode walls. In Hall-type MHD generators with electrodes short-circuited in the transverse cross section of the channel the development of inhomogeneities results in a decrease of the efficiency of the MHD converter [1]. A two-dimensional electric field develops in the transverse section. Numerical computations of this effect for channels of rectangular cross section have been done in [2, 3], At the same time it is advisable to construct analytic solutions of model problems on the potential distribution in Hall channels, which would permit a qualitative analysis of the effect of the inhomogeneous conductivity on local and integral characteristics of the generators. In the present work an exact solution of the transverse two-dimensional problem is given for the case of a channel with elliptical cross section stretched along the magnetic field. The parametric model of the distribution of the electrical conductivity of boundary layer type has been used for obtaining the solution. The dependences of the electric field and the current and also of the integral electrical characteristics of the generator on the inhomogeneity parameters are analyzed.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 1, pp. 3–10, January–February, 1973.  相似文献   

4.
Anti-plane dynamic fracture analysis is presented for functionally graded materials (FGM) with arbitrary spatial variations of material properties. The FGM with the material properties varying continuously in an arbitrary manner is modeled as a multi-layered medium with the elastic modulus and mass density varying linearly in each sub-layer and continuous at the interfaces between two adjacent sub-layers. With this linearly inhomogeneous multi-layered model, the problem of a crack in a graded interfacial zone bonded to two homogeneous half-spaces or in a coating bonded to a homogeneous half-space subjected to the anti-plane shear impact load is investigated. Laplace and Fourier transforms and transfer matrix are applied to reduce the associated mixed boundary value problem to a Cauchy singular integral equation which is solved numerically in the Laplace transformed domain. The dynamic stress intensity factors (DSIF) are obtained by using the numerical technique of Laplace inversion.  相似文献   

5.
Transient response of an annular interfacial crack between dissimilar magnetoelectroelastic layers under impacts is investigated. On the crack surface, magnetoelectrically impermeable boundary condition is adopted. Using Laplace and Hankel transform techniques, the mixed boundary value problem is reduced to a system of singular integral equations. The integral equations are further reduced to a system of algebraic equations with the aid of Jacobi polynomials. The dynamic field intensity factor and dynamic energy release rate are determined. Numerical results reveal the effects of electric or magnetic loadings and material parameters of composite on crack propagation and growth.  相似文献   

6.
A new Boundary Integral Equation (BIE) formulation for Stokes flow is presented for three-dimensional and axisymmetrical problems using non-primitive variables, assuming velocity field is prescribed on the boundary. The formulation involves the vector potential, instead of the classical stream function, and all three components of the vorticity are implied. Furthermore, following the Helmholtz decomposition, a scalar potential is added to represent the solenoidal velocity field. Firstly, the BIEs for three-dimensional flows are formulated for the vector potential and the vorticity by employing the fundamental solutions in free space of vector Laplace and biharmonic equations. The equations for axisymmetric flows are then derived from the three-dimensional formulation in a second step. The outcome is a domain integral free BIE formulation for both three-dimensional and axisymmetric Stokes flows with prescribed velocity boundary condition. Numerical results are included to validate and show the efficiency of the proposed axisymmetric formulation.  相似文献   

7.
The boundary integral formulation of the solution to the Stokes equations is used to describe the deformation of small compound non‐Newtonian axisymmetric drops suspended in a Newtonian fluid that is subjected to an axisymmetric flow field. The non‐Newtonian stress is treated as a source term in the Stokes equations, which yields an extra integral over the domains containing non‐Newtonian material. By transforming the integral representation for the velocity to cylindrical co‐ordinates and performing the integration over the azimuthal direction analytically, the dimension of the problem can be reduced from three to two. A boundary element method for the remaining two‐dimensional problem aimed at the simulation of the deformation of such axisymmetric compound non‐Newtonian drops is developed. Apart from a numerical validation of the method, simulation results for a drop consisting of an Oldroyd‐B fluid and a viscoelastic material are presented. Moreover, the method is extended to compound drops that are composed of a viscous inner core encapsulated by a viscoelastic material. The simulation results for these drops are verified against theoretical results from literature. Moreover, it is shown that the method can be used to identify the dominant break‐up mechanism of compound drops in relation to the specific non‐Newtonian character of the membrane. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

8.
陈莘莘  刁呈岩 《力学季刊》2019,40(1):124-130
本文将无网格自然邻接点Petrov-Galerkin 法应用于轴对称弹性体扭转问题的求解.无网格自然邻接点Petrov-Galerkin 法采用自然邻接点插值构造试函数,并且采用三角形线性单元的形函数作为加权残值法的加权函数.自然邻接点插值构造的试函数满足Kronecker delta 函数性质,因此本质边界条件的施加十分方便.由于几何形状和边界条件的轴对称特点,原来的空间问题简化为二维问题求解,因此计算时只需要横截面上离散节点的信息.数值算例结果表明,所提出的方法对求解轴对称弹性体扭转问题是行之有效的.  相似文献   

9.
We consider the boundary value problem for stationary magnetohydrodynamic equations of electrically and heat conducting fluid under inhomogeneous mixed boundary conditions for electromagnetic field and temperature and Dirichlet condition for the velocity. The problem describes the thermoelectromagnetic flow of a viscous fluid in 3D bounded domain with the boundary consisting of several parts with different thermo- and electrophysical properties. The global solvability of the boundary value problem is proved and the apriori estimates of the solution are derived. The sufficient conditions on the data are established which provide a local uniqueness of the solution.  相似文献   

10.
A theoretical solution for axially symmetric problems in elastodynamics   总被引:1,自引:0,他引:1  
This paper presents a theoretical solution for the basic equation of axisymmetric problems in elastodynamics. The solution is composed of a quasi-static solution which satisfies inhomogeneous boundary conditions and a dynamic solution which satisfies homogeneous boundary conditions. After the quasi-static solution has been obtained an inhomogeneous equation for dynamic solution is found from the basic equation. By making use of eigenvalue problem of a corresponding homogeneous equation, a finite Hankel transform is defined. A dynamic solution satisfying homogeneous boundary conditions is obtained by means of the finite Hankel transform and Laplace transform. Thus, an exact solution is obtained. Through an example of hollow cylinders under dynamic load, it is seen that the method, and the process of computing are simple, effective and accurate.  相似文献   

11.
When the source nodes are on the global boundary in the implementation of local boundary integral equation method (LBIEM),singularities in the local boundary integrals need to be treated specially. In the current paper,local integral equations are adopted for the nodes inside the domain trod moving least square approximation (MLSA) for the nodes on the global boundary,thus singularities will not occur in the new al- gorithm.At the same time,approximation errors of boundary integrals are reduced significantly.As applications and numerical tests,Laplace equation and Helmholtz equa- tion problems are considered and excellent numerical results are obtained.Furthermore, when solving the Hehnholtz problems,the modified basis functions with wave solutions are adapted to replace the usually-used monomial basis functions.Numerical results show that this treatment is simple and effective and its application is promising in solutions for the wave propagation problem with high wave number.  相似文献   

12.
吴迪  赵宝生 《应用力学学报》2012,29(4):349-352,481
为了得到精确的应力场、位移场、温度场,将扭转圆轴的精化理论研究方法推广到轴对称横观各向同性热弹性圆柱。利用Bessel函数以及轴对称横观各向同性热弹性圆柱的通解,给出了轴对称横观各向同性热弹性圆柱的分解定理。根据柱面齐次边界条件获得了精确的精化方程,精化方程可以分解为一阶方程、超越方程、温度方程,从而将横观各向同性热弹性圆柱的轴对称问题分解为轴向拉压问题、超越问题、热-应力耦合问题。超越部分对应端部自平衡情况,可以清晰地了解到端部应力分布对内部应力场的影响,热-应力耦合部分对应无外加应力场时圆柱内部因温度变化引起的热应力。  相似文献   

13.
An accurate finite element scheme for computing 3D‐axisymmetric incompressible free surface and interface flows is proposed. It is based on the arbitrary Lagrangian Eulerian (ALE) approach using free surface/interface‐resolved moving meshes. Key features like the surface force, consisting of surface tension and the local curvature, and jumps in the density and viscosity over different fluid phases are precisely incorporated in the finite element formulation. The local curvature is approximated by using the Laplace–Beltrami operator technique combined with a boundary approximation by isoparametric finite elements. A new approach is used to derive the 3D‐axisymmetric form from the variational form in 3D‐Cartesian coordinates. Several test examples show the high accuracy and the robustness of the proposed scheme. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
A dynamic thermoelastic solution of a cylindrically isotropic cylindrical tube or solid cylinder with axisymmetric plane deformations is developed. Since there exist thermal boundary conditions and tractions on the two surfaces of a cylindrical tube, the problem under consideration is with inhomogeneous boundary conditions. Therefore we introduce a special function to transform the inhomogeneous boundary conditions to homogeneous ones for an unknown function. Then by using the method of separation of variables, the unknown function can be expressed as the multiplication series of Bessel functions and unknown time functions. Thirdly, by virtue of the orthogonal properties of Bessel functions, the equations about these unknown time functions are derived and the solutions are obtained. Finally, the displacement is obtained by adding the two parts mentioned above. By means of the present method, integral transform can be avoided. It is suitable for arbitrary thermal loads and mechanical loads. Numerical results are also presented for thermal shocked, cylindrically isotropic cylindrical tube and solid cylinder. Project supported by the National Natural Science Foundation of China (No. 10172075 and No. 10002016).  相似文献   

15.
This paper illustrates an application of the so-called dimensional reduction modelling approach to obtain a mixed, 3D, linear, elastic beam-model.We start from the 3D linear elastic problem, formulated through the Hellinger–Reissner functional, then we introduce a cross-section piecewise-polynomial approximation, and finally we integrate within the cross section, obtaining a beam model that satisfies the cross-section equilibrium and could be applied to inhomogeneous bodies with also a non trivial geometries (such as L-shape cross section). Moreover the beam model can predict the local effects of both boundary displacement constraints and non homogeneous or concentrated boundary load distributions, usually not accurately captured by most of the popular beam models.We modify the beam-model formulation in order to satisfy the axial compatibility (and without violating equilibrium within the cross section), then we introduce axis piecewise-polynomial approximation, and finally we integrate along the beam axis, obtaining a beam finite element. Also the beam finite elements have the capability to describe local effects of constraints and loads. Moreover, the proposed beam finite element describes the stress distribution inside the cross section with high accuracy.In addition to the simplicity of the derivation procedure and the very satisfying numerical performances, both the beam model and the beam finite element can be refined arbitrarily, allowing to adapt the model accuracy to specific needs of practitioners.  相似文献   

16.
Two models are presented for the transient migration of a volatile organic compound (VOC) from soil to the interor of a house with a crawl space. The migration in the house is taken as one-dimensional (1D) and coupled to a soil transportation model with diffusion, leaching and VOC degradation. The diffusion is either vertical, providing a 1D model, or three-dimensional (3D) axisymmetric, providing a 3D model. The initial subsurface VOC deposition is assumed to be a finite layer extending over the footprint of the house in the 1D case or as a cylinder of arbitrary radius in the 3D case. Using data for benzene as the VOC, comparisons are made for results from the two models for VOC concentrations in soil, crawl space and dwelling space as well as the cumulative dwelling space concentration used in human health assessment, for a wide range of soil parameters and subsurface sizes of the initial VOC cylinder. In all cases the values from the 1D transport model were slightly higher than those for the 3D model. The analysis uses Laplace transforms with numerical inversions. For the 3D soil transport model, different soil surface flux boundary conditions underneath and outside the house give rise to novel dual integral equations.  相似文献   

17.
This paper firstly works out basic differential equations of piezoelectric materials expressed in terms of potential functions, which are introduced in the very beginning. These equations are primarily solved through Laplace transformation, semi-infinite Fourier sine transformation and cosine transformation. Secondly, dual equations of dynamic cracks problem in 2D piezoelectric materials are established with the help of Fourier reverse transformation and the introduction of boundary conditions. Finally, according to the character of the Bessel function and by making full use of the Abel integral equation and its reverse transform, the dual equations are changed into the second type of Fredholm integral equations. The investigation indicates that the study approach taken is feasible and has potential to be an effective method to do research on issues of this kind.  相似文献   

18.
非均匀复合材料的动态热弹性断裂力学分析   总被引:8,自引:1,他引:7  
对非均匀复合材料的动态热弹性断裂力学问题进行了研究,假设材料参数沿厚度方向为变化的,沿该方向将复合材料划分为许多单层,取每一单层材料参数为常数,应用Fourier变换法,在Laplace域内推导出了控制问题的奇异积分方程组,给出了热应力强度因子的表达式,然后利用Laplace数值反演,得出了裂纹尖端的动态应力强度因子.本文的方法具有以下特点:(1)多个垂直于厚度方向的裂纹,(2)材料可以为正交各向异性:(3)考虑了惯性效应.作为算例,研究了带有两个裂纹的功能梯度结构,分析了材料参数的变化对应力强度因子的影响.  相似文献   

19.
A 3-D nonlinear problem of supercavitating flow past an axisymmetric body at a small angle of attack is investigated by means of the perturbation method and Fourier-cosine-expansion method. The first three order perturbation equations are derived in detail and solved numerically using the boundary integral equation method and iterative techniques. Computational results of the hydrodynamic characteristics and cavity shapes of each order are presented for nonaxisymmetric supercavitating flow past cones with various apex-angles at different cavitation numbers. The numerical results are found in good agreement with experimental data. The project supported by the National Natural Science Foundation of China  相似文献   

20.
动态载荷下功能梯度复合材料的圆币形裂纹问题   总被引:4,自引:0,他引:4  
研究了动态载荷下功能梯度材料中的圆币形裂纹问题.假设材料为横观各向同性,并且含有多个垂直于厚度方向的裂纹,材料参数沿轴向(与裂纹面垂直的方向)为变化的,沿该方向将材料划分为许多单层,各单层材料参数为常数,利用Hankel变换法,在Laplace域内推导出了控制问题的对偶积分方程组.利用Laplace数值反演,得出了裂纹尖端的动态应力强度因子和能量释放率.研究了含两个裂纹的功能梯度接头结构,分析了材料非均匀性参数对应力强度因子和能量释放率的影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号