首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper reports on the experimental examination of the deformation characteristics near a crack tip in a cyclically work-hardened copper single crystal using a 2D surface scans with nano-indentation. The experimental methodology enables the characterization of the primary deformation field near a crack tip via the modulation of the imposed secondary deformation field by a nano-indentation. In a heavily deformed 4-point bend specimen, the measurements showed an existence of an asymptotic field around the crack tip at a distance of R  2.5J/σ0. The measurements also showed the qualitative details of toughness evolution within the high-gradient deformation field around the crack tip. The nature of dislocation distribution (i.e. statistically distributed vs. distributions necessitated by geometry) around the crack tip is quantified. The measurements indicate the dominance of the geometrically necessary dislocation within the finite deformation zone ahead of the tip up to a distance of R  3J/σ0. Thereafter, it is confined in radial rays coinciding with the sector boundaries around the crack tip. These measurements elucidate the origin of the inhomogeneous hardening and the size dependent macroscopic response close to crack tip.  相似文献   

2.
3.
The engineering response of metamaterials has a dramatic impact on the physics, optics and engineering communities, because they offer electromagnetic properties that are difficult or impossible to achieve with conventional materials. In this paper, an asymptotic analysis of the electromagnetic fields at multi-material wedges composed of metamaterials is proposed. This is made possible by removing the assumption of positive electric permittivities and magnetic permeabilities, an hypothesis which usually applies to conventional materials. Exploring the whole range of variability of these electromagnetic properties, it is shown that, in addition to the classical real eigenvalues 0 ? λ < 1 leading to power-law singularities of the type O(rλ?1) as r  0, it is also possible to find imaginary eigenvalues leading to hypersingular solutions, as well as nonsingular configurations for a suitable choice of the negative electric permittivities and magnetic permeabilities of the media. Moreover, to fully characterize the asymptotic fields, the analysis is not only restricted to the determination of the lowest real and complex eigenvalues, but is also extended to the evaluation of the higher-order nonsingular ones. The obtained analytical results collected in synthetic diagrams are expected to have impact on the design of micro- and nano-electro-mechanical systems.  相似文献   

4.
5.
We use previous theoretical results for the added mass, history and lubrication forces between two spheres colliding in a fluid with viscosity ν to investigate the effect of viscous dissipation on the coefficient of restitution during contact. We assume that the mechanical interaction is governed by Hertzian mechanical contact of small duration τ and that the minimum approach distance between particles is approximately equal to the height σ of surface micro-asperities. A non-dimensionalization of the equation of motion indicates that the contact dynamics is governed by two parameters – the ratio ϵ of the surface roughness σ and the sphere radius a, and a contact Stokes number defined as Stc = σ2/ντ. An asymptotic solution of the equation of motion in the limit of small ϵ/Stc is used to obtain an explicit expression for the coefficient of restitution during contact and the latter is compared with estimates based on numerical solutions of the non-linear equation of motion.  相似文献   

6.
The plastic blunting process during stage II fatigue crack growth was studied in pure polycrystalline Ni to investigate effects of strain localization and inelastic behavior on the kinematics of crack advance. Correlations were obtained between strain fields ahead of a fatigue crack, crack advance per cycle and crack growth kinetics. Strain fields were quantified using a combination of in situ loading experiments, scanning electron microscopy and digital image correlation for 8 < ΔK < 20 MPa m1/2 and a fixed load ratio of 0.1. Results indicate that strain localized along a dominant deformation band, which was usually crystallographic and carried mostly pure shear for large loads and was of mixed character for lower loads. Instances of double deformation bands were observed, with bands acting either in a simultaneous or alternating fashion. It was found that the area integral of the opening strain for values larger than a given threshold, an “integrated” strain, had a power-law relationship with ΔK, with the exponent approximately equal to the Paris exponent (m). Therefore, the crack growth rate was proportional to the integrated strain. An analysis based on this correlation and the presence of dominant shear bands indicated that the integrated strain is related to the accumulated displacement in the band. This, in turn, is proportional to the product of the cyclic plastic zone radius and the average shear strain ahead of the tip, which represents a basic length scale for plastic blunting. Assumptions on the load dependence of these quantities, based on their observed spatial variation, allowed estimating m=21+11+n, where n′ is the cyclic hardening exponent (0 < n < 1). This gives 3 < m < 4, which accounts for about 50% of the observed values of m between 1.5 and 6 for a wide variety of metallic materials.  相似文献   

7.
This paper examines the accuracy of the extracted elastic properties using the nanoindentation technique on elasto-plastic materials. The application of the correction factor evaluated in the linearly elastic case [Poon, B., Rittel, D., Ravichandran, G., 2008. An analysis of nanoindentation in linearly elastic solids. Int. J. Solids Structures 45 (24), 6018–6033.] on elastic–plastic materials is critically examined. It is then established that the accurate determination of the projected area of contact is found to be crucial for the accurate determination of elastic material properties. The conventional methods for the accurate determination of contact area are generally limited to ratios of Young’s modulus over yield stress, E/σy < 30 for elastic-perfectly plastic materials, which is too stringent for most materials. Thus, a new electrical resistance method is proposed to measure directly the projected contact area. Using numerical simulations, it was found that with the accurate determination of A, the error associated with the extracted elastic material properties is reduced by more than 50% in some cases. Using the newly proposed procedure, the error is also found to be independent of E/σy and the tip radius, ρ, and it is only a function of Poisson’s ratio, ν. This suggests that the errors might be due to the residual stresses at the plastic imprint that were found to depend on ν as well.  相似文献   

8.
A mode III crack with a cohesive zone in a power-law hardening material is studied under small scale yielding conditions. The cohesive law follows a softening path with the peak traction at the start of separation process. The stress and strain fields in the plastic zone, and the cohesive traction and separation displacement in the cohesive zone are obtained. The results show that for a modest hardening material (with a hardening exponent N = 0.3), the stress distribution in a large portion of the plastic zone is significantly altered with the introduction of the cohesive zone if the peak cohesive traction is less than two times yield stress, which implies the disparity in terms of the fracture prediction between the classical approach of elastic–plastic fracture mechanics and the cohesive zone approach. The stress distributions with and without the cohesive zone converge when the peak cohesive traction becomes infinitely large. A qualitative study on the equivalency between the cohesive zone approach and the classical linear elastic fracture mechanics indicates that smaller cracks require a higher peak cohesive traction than that for longer cracks if similar fracture initiations are to be predicted by the two approaches.  相似文献   

9.
Unsteady gravity-driven flow of a thin slender rivulet of a non-Newtonian power-law fluid on a plane inclined at an angle α to the horizontal is considered. Unsteady similarity solutions are obtained for both converging sessile rivulets (when 0 < α < π/2) in the case x < 0 with t < 0, and diverging pendent rivulets (when π/2 < α < π) in the case x > 0 with t > 0, where x denotes a coordinate measured down the plane and t denotes time. Numerical and asymptotic methods are used to show that for each value of the power-law index N there are two physically realisable solutions, with cross-sectional profiles that are ‘single-humped’ and ‘double-humped’, respectively. Each solution predicts that at any time t the rivulet widens or narrows according to |x | (2N+1)/2(N+1) and thickens or thins according to |x | N/(N+1) as it flows down the plane; moreover, at any station x, it widens or narrows according to |t | ?N/2(N+1) and thickens or thins according to |t | ?N/(N+1). The length of a truncated rivulet of fixed volume is found to behave according to |t | N/(2N+1).  相似文献   

10.
A phenomenological study of parabolic and spherical indentation of elastic ideally plastic materials was carried out by using precise results of finite elements calculations. The study shows that no “pseudo-Hertzian” regime occurs during spherical indentation. As soon as the yield stress of the indented material is exceeded, a deviation from the, purely elastic Hertzian contact behaviour is found. Two elastic–plastic regimes and two plastic regimes are observed for materials of very large Young modulus to Yield stress ratio, E/σy. The first elastic–plastic regime corresponds to a strong evolution of the indented plastic zone. The first plastic regime corresponds to the commonly called “fully plastic regime”, in which the average indentation pressure is constant and equal to about three times the yield stress of the indented material. In this regime, the contact depth to penetration depth ratio tends toward a constant value, i.e. hc/h = 1.47. hc/h is only constant for very low values of yield strain (σy/E lower than 5 × 10?6) when aE1/y is higher than 10,000. The second plastic regime corresponds to a decrease in the average indentation pressure and to a steeper increase in the pile-up. For materials with very large E/σy ratio, the second plastic regime appears when the value of the non-dimensional contact radius a/R is lower than 0.01. In the case of spherical and parabolic indentation, results show that the first plastic regime exists only for elastic-ideally plastic materials having an E/σy ratio higher than approximately 2.000.  相似文献   

11.
This paper considers an interfacial crack with a cohesive zone ahead of the crack tip in a linearly elastic isotropic bi-material and derives the mixed-mode asymptotic stress and displacement fields around the crack and cohesive zone under plane deformation conditions (plane stress or plane strain). The field solution is obtained using elliptic coordinates and complex functions and can be represented in terms of a complete set of complex eigenfunction terms. The imaginary portion of the eigenvalues is characterized by a bi-material mismatch parameter ε = arctanh(β)/π, where β is a Dundurs parameter, and the resulting fields do not contain stress singularity. The behaviors of “Mode I” type and “Mode II” type fields based on dominant eigenfunction terms are discussed in detail. For completeness, the counterpart for the Mode III solution is included in an appendix.  相似文献   

12.
An elastic, rectangular, and simply supported, functionally graded material (FGM) plate of medium thickness subjected to transverse loading has been investigated. The Poisson’s ratios of the FGM plates are assumed to be constant, but their Young’s moduli vary continuously throughout the thickness direction according to the volume fraction of constituents defined by power-law, sigmoid, or exponential function. Based on the classical plate theory and Fourier series expansion, the series solutions of power-law FGM (simply called P-FGM), sigmoid FGM (S-FGM), and exponential FGM (E-FGM) plates are obtained. The analytical solutions of P-, S- and E-FGM plates are proved by the numerical results of finite element method. The closed-form solutions illustrated by Fourier series expression are given in Part I of this paper. The closed-form and finite element solutions are compared and discussed in Part II of this paper. Results reveal that the formulations of the solutions of FGM plates and homogeneous plates are similar, except the bending stiffness of plates. The bending stiffness of a homogeneous plate is Eh3/12(1  ν2), while the expressions of the bending stiffness of FGM plates are more complicated combination of material properties.  相似文献   

13.
Analytical solutions for an anti-plane Griffith moving crack inside an infinite magnetoelectroelastic medium under the conditions of permeable crack faces are formulated using integral transform method. The far-field anti-plane mechanical shear and in-plane electrical and magnetic loadings are applied to the magnetoelectroelastic material. Expressions for stresses, electric displacements and magnetic inductions in the vicinity of the crack tip are derived. Field intensity factors for magnetoelectroelastic material are obtained. The stresses, electric displacements and magnetic inductions at the crack tip show inverse square root singularities. The moving speed of the crack have influence on the dynamic electric displacement intensity factor (DEDIF) and the dynamic magnetic induction intensity factor (DMIIF), while the dynamic stress intensity factor (DSIF) does not depend on the velocity of the moving crack. When the crack is moving at very lower or very higher speeds, the crack will propagate along its original plane; while in the range of Mc1 < M < Mc2, the propagation of the crack possibly brings about the branch phenomena in magnetoelectroelastic media.  相似文献   

14.
Although the discharge flow of spherical materials has been extensively explored, the effect of particle shape on discharge is still poorly understood. The present work explores the two-dimensional discharge flow fields of noncircular particles using the soft-sphere-imbedded pseudo-hard particle model method. Rectangular particles having different aspect ratios (Ra = 1, 1.5, 2–5) and regular polygonal particles having different numbers of sides (Ns = 3–8, 10) are discharged through hopper beds having different orifice widths (Di = 40, 70.77, 99.13, 125.74, 151.13 mm). The discharge rates of differently shaped particles in different beds are consistent with Beverloo’s relation. Moreover, the flow fields are computed and evaluated to study the effects of Ra, Ns, and Di on particle discharge. The characteristics of particle–particle connections in the discharge process are evaluated according to the temporal evolution and spatial distribution of the contact points. Additionally, the effect of the initial packing on the discharge profile is investigated. The findings help clarify the discharge of noncircular particles.  相似文献   

15.
The process of ductile plate perforation by sharp-nosed rigid projectiles is further examined in this work through 2D numerical simulations. We highlight various features concerning the effective resisting stress (σr) which a finite thickness plate, with a flow stress of Yt, exerts on the projectile during perforation. In particular, we show that the normalized resisting stress (σr/Yt) can be represented as a unique function of the normalized thickness of the plate (H/D, where H is plate thickness and D is projectile diameter), for a large range of normalized thicknesses. Our simulations for very thin target plates show that the penetration process is achieved through the well-known dishing mechanism, where the target material is pushed forward by the projectile’s nose. An important observation, which emerges from our simulations, is that the transition between the dishing and the hole enlargement mechanisms takes place at a normalized thickness of about H/D = 1/3. We also find that the normalized resistive stress for intermediate plate thicknesses, 1/3 < H/D < 1.0, is relatively constant at a value of σr/Yt = 2.0. This range of thicknesses conforms to a state of quasi plane stress in the plates. For thicker plates (H/D > 1) the σr/Yt ratio increases monotonically to values which represent the resistance to penetration of semi-infinite targets, where the stress state is characterized by plane strain conditions. Using a simple model, which is based on energy conservation, we can predict the values of the ballistic limit velocities for many projectile/target combinations, provided the perforation is done through the ductile hole enlargement mechanism. Good agreement is demonstrated between predictions from our model and experimental data from different sources, strongly enhancing the confidence in both the validity and usefulness of our model.  相似文献   

16.
The velocity field and the adequate shear stress corresponding to the flow of a generalized Burgers’ fluid model, between two infinite co-axial cylinders, are determined by means of Laplace and finite Hankel transforms. The motion is due to the inner cylinder that applies a time dependent torsional shear to the fluid. The solutions that have been obtained, presented in series form in terms of usual Bessel functions J1( ? ), J2( ? ), Y1( ? ) and Y2( ? ), satisfy all imposed initial and boundary conditions. Moreover, the corresponding solutions for Burgers’, Oldroyd-B, Maxwell, second grade, Newtonian fluids and large-time transient solutions for generalized Burgers’ fluid are also obtained as special cases of the present general solutions. The effect of various parameters on large-time and transient solutions of generalized Burgers’ fluid is also discussed. Furthermore, for small values of the material parameters, λ2 and λ4 or λ1, λ2, λ3 and λ4, the general solutions corresponding to generalized Burgers’ fluids are going to those for Oldroyd-B and Newtonian fluids, respectively. Finally, the influence of the pertinent parameters on the fluid motion, as well as a comparison between models, is shown by graphical illustrations.  相似文献   

17.
In this paper, interlaminar crack initiation and propagation under mode-I with static and fatigue loading of a composite material are experimentally assessed for different test temperatures. The material under study is made of a 3501-6 epoxy matrix reinforced with AS4 unidirectional carbon fibres, with a symmetric laminate configuration [0°]16/S. In the experimental programme, DCB specimens were tested under static and fatigue loading. Based on the results obtained from static tests, fatigue tests were programmed to analyse the mode-I fatigue behaviour, so the necessary number of cycles was calculated for initiation and propagation of the crack at the different temperatures. GN curves were determined under fatigue loading, N being the number of cycles at which delamination begins for a given energy release rate. GICmaxa, aN and da/dNa curves were also determined for different Gcr rates (90%, 85%, 75%, etc.) and different test temperatures: 90 °C, 50 °C, 20 °C, 0 °C, ?30 °C and ?60 °C.  相似文献   

18.
19.
Surface responses induced by point load or uniform traction moving steadily with subsonic speed on an anisotropic half-plane boundary are investigated. It is found that the effects of the material constant on surface displacements are through matrices L?1(v) and S(v)L?1(v), while those on surface stress components are through matrices Ω(v) and Γ(v). Explicit expressions for the elements of these four matrices are expressed in terms of elastic stiffness for general anisotropic materials. The special cases of monoclinic materials with symmetry plane at x1 = 0, x2 = 0 and x3 = 0, and the case for orthotropic materials are all deduced. Results for isotropic material may be recovered from present results. For monoclinic materials with a plane of symmetry at x3 = 0, two of the elements of matrix Ω(v) are found to be independent of subsonic speed.  相似文献   

20.
Fractures in natural rocks have an important effect on the strength and failure behavior of rock mass, which are often evaluated in rock engineering practice. The theoretical evaluation of mechanical behavior of fractured rock mass has no satisfactory answer due to the role of confining pressure and crack geometry. Therefore, in this paper, conventional triaxial compression experiments were carried out to study the strength and failure behavior of marble samples with two pre-existing closed cracks in non-overlapping geometry. Based on the experimental results of a number of triaxial compression tests, the effect of crack coalescence on the axial supporting capacity and deformation property were investigated with different confining pressures. The results show that intact samples and flawed samples (marble with pre-existing cracks) have different deformation properties after peak stress, which change from brittleness to plasticity and ductility with the increase of confining pressure. The peak strength and failure mode are found depending not only on the geometry of flaw, but also on the confining pressure. The strength of flawed samples shows distinct non-linear behavior, which is in a better agreement with non-linear Hoek–Brown criterion than linear Mohr–Coulomb criterion. For a kind of rock that has been evaluated as a Hoek–Brown material, a new evaluation criterion is put forward by adopting optimal approximation polynomial theory, which can be used to confirm more precisely the strength parameters (cohesion and internal friction angle) of flawed samples. For intact samples, the marble leads to typical shear failure mode with a single fracture surface under different confining pressures, while for flawed samples, under uniaxial compression and a lower confining pressure (σ3 = 10 MPa), tests for coarse and medium marble (the coarse and medium refer to the grain size) exhibit three basic failure modes, i.e., tensile mode, shear mode, and mixed mode (tensile and shear). Shear mode is associated with lower strength behavior. However, under higher confining pressures (σ3 = 30 MPa), for coarse marble, the axial supporting capacity is not related to the geometry of flaw. The friction among crystal grains determines the strength behavior of coarse marble. For medium marble, the failure mode and deformation behavior are dependent on the crack coalescence in the sample. The present research provides increased understanding of the fundamental nature of rock failure under conventional triaxial compression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号