首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Temperature dependent Raman study of C–H in-plane bending mode (~1163 cm?1 and ~1190 cm?1) and C–C stretching mode of phenyl ring (~1571 cm?1 and ~1594 cm?1) of N-(4-n-pentyloxybenzylidene)-4′-heptylaniline (5O.7) has been done. Vibrational assignment and potential energy distribution (PED) of individual modes have been calculated employing density functional theory (DFT) for the first time. The SB  SC transition is nicely depicted in the variation of the linewidth of the ~1163 cm?1 band and the peak position of ~1594 cm?1 band with temperature. Because of a small amount of charge density transfer from the core part to the alkyl chain region, the ~1163 cm?1 band shifts towards lower wavenumber side whereas the ~1190 cm?1 band towards higher wavenumber side at SB  SC transition. The ~1571 cm?1 and ~1594 cm?1 bands are assigned as 8a and 8b modes, whose relative intensity variation with temperature gives the evidence of increased possibility of C–H bending motion of the linking group and the C–C stretching of the alkyl chain in SC phase.  相似文献   

2.
We prepared polyaniline-poly(4-styrenesulfonate) nanoparticles (PANI/PSS-NPs) by chemical oxidation polymerization in aqueous solution. We investigated the potential of the PANI/PSS-NPs to be used as an anode electrode for electrochromic devices and the effect of Li+ insertion (or deinsertion) kinetics and diffusion of Li+. A uniform electrochromic layer of PANI/PSS-NPs with a size of ca. 28 nm could be obtained by a solution process, specifically spin coating. The PANI/PSS-NPs film has a high Li+ diffusion coefficient (~7.7 × 10?9 cm2 s?1) and low charge transfer resistance (~99 Ω), which result in its having a fast electrochromic response time (coloring time <1.7 s, bleaching time <2.4 s), and high coloration efficiency (>108 cm2 C?1).  相似文献   

3.
A novel polymeric electrolyte based on a self-assembled copolymer moiety has been prepared by a simple method of photo-induced radical polymerization of a mixture consisting of stearylmethacrylate (SMA) and poly(ethylene glycol)-monomethacrylate (PEM) that dissolves LiBF4 as the electrolytic salt. The SMA moiety work as mechanically stable backbone and the PEM unit dissolving the salts serves as ion-conducting path in the polymeric composite. Solid-state NMR measurements indicated that the resulting polymer composite consists of PEM-rich and SMA-rich phases, each of which exists within several nanometers apart. The ionic conductivity of the polymer electrolyte with the composition of PEM/SMA = 7/3 (by mass ratio) was 2.8 × 10?5 S cm?1 at 50 °C, which was significantly higher than that of the polymer electrolyte based on cross-linked PEM copolymer without SMA.  相似文献   

4.
The microstructures, irradiation-induced defects and changes of mechanical property of Chinese domestic A508-3 steels after proton irradiation were investigated by TEM, positron lifetime, slow positron beam Doppler broadening spectroscopy and hardness measurements. The defects were induced by 240 keV proton irradiation with fluences of 1.25×1017 ions cm?2 (0.26 dpa), 2.5×1017 ions cm?2 (0.5 dpa), and 5.0×1017 ions cm?2 (1.0 dpa). The TEM observation revealed that the as-received steel had typical bainitic–ferritic microstructures. It was also observed that Doppler broadening S-parameter and average lifetime increased with dose level owing to the formation of defects and voids induced by proton irradiation. The correlation between positron parameters and hardness was found.  相似文献   

5.
Spongy-like NaTaO3 mesoporous microspheres are assembled from nanoparticles via imperfect oriented attachment. Study shows that the NaTaO3 spongy microspheres with the diameters of ~1 μm are composed of the fundamental building blocks of ~50 nm NaTaO3 nanospheres. The high-resolution transmission electron microscopy further reveals that these fundamental building blocks are assembled from primary building blocks of ~10 nm NaTaO3 nanocrystals. The pore diameters of these spongy microspheres are ca. 30 nm and the Brunauer–Emmett–Teller (BET) surface area is calculated to be 57.8 m2 g?1. This interesting ternary alkali metal composite oxide of NaTaO3 spongy microspheres with high specific surface area and strong stability will be favorable for their practical application in photocatalysis. This synthesis route may throw light on the fabrication of the binary or ternary porous metal oxides by geometrical stacking of the nanobuilding blocks via imperfect oriented attachment.  相似文献   

6.
Novel hexabutylsulphonyltribenzotetraazachlorin–fullerene (C60) complexes of iron (FeHBSTBTAC–C60) and cobalt (CoHBSTBTAC–C60) have been synthesized and their electrochemistry and oxygen reduction reaction (ORR) compared with their octabutylsulphonylphthalocyanine analogues (FeOBSPc and CoOBSPc). It is proved that electron-withdrawing substituents (–SO2Bu and C60) on phthalocyanine macrocycle exhibit distinct impact on the solution electrochemistry of these metallophthalocyanine (MPc) complexes. The more electron-withdrawing C60 substituent suppressed ORR compared to the –SO2Bu in alkaline medium. FeOBSPc showed the best ORR activity involving a direct 4-electron mechanism, a rate constant of ~1 × 108 cm3 mol?1 s?1 and a Tafel slope of ?171 mV dec?1.  相似文献   

7.
Amperometric enzyme biosensor based on the glucose oxidase (GOx) incorporated polyaniline nanowires (PANI-NWs) on carbon cloth (CC) electrode was demonstrated. The simple, direct-growth of PANI-NWs on CC, via electrochemical polymerization, provides free-standing, template-independent, hence almost (interfacial) defects-free nanostructures. The defect-free interfaces, along with the excellently sensitive organic nanostructured-surface, as evident from its significantly large effective surface area (24 times the geometric area) for redox-sensing, allows efficient entrapment/immobilization and sensing of biomolecules, via rapid electron-transfer at NWs-CC. The GOx-immobilized PANI-NWs/CC, even in initial unoptimized stage, exhibited an excellent sensitivity, ~2.5 mA mM?1 cm?2, to glucose, over detection range 0–8 mM, adequate for clinical monitoring of human glucose levels. The report clearly reveals a cost-effective simple system possessing enormous potentiality for biosensors, bioenergy and bioelectronics applications.  相似文献   

8.
We report the preparation of phosphoric acid doped poly(2,5-benzimidazole) (ABPBI) membranes for PEMFC by simultaneously doping and casting from a poly(2,5-benzimidazole)/phosphoric acid/methanesulfonic acid (MSA) solution. The evaporation of MSA yields a very homogeneous membrane having a better controlled composition, avoiding the use of solvent-intensive procedures. Membranes have been prepared with contents of up to 3.0H3PO4 molecules per ABPBI repeating unit. These membranes achieve a maximum conductivity of 1.5 × 10−2 S cm−1 at temperatures as high as 180 °C in dry conditions. These ABPBI membranes are more conveniently prepared than those conventionally formed and doped in separate steps while featuring comparable conductivities (ABPBI × 2.7H3PO4 prepared by the soaking method showed a conductivity of 2.5 × 10−2 S cm−1 at 180 °C in dry conditions).  相似文献   

9.
A proof of principle experiment was performed by recording the cavity enhanced absorption spectrum of the weak bX transition of molecular oxygen in the atmosphere using a Ti:Sa femtosecond laser as an absorption source and a high resolution continuous scan Fourier transform interferometer. The cavity was mode matched and either continuously scanned or stabilized at the so-called magic point. An optimal rms noise equivalent absorption of 3 × 10?7 cm?1 Hz?1/2 was reached in the latter case, corresponding to αmin = 3 × 10?7 cm?1.  相似文献   

10.
In this Letter we report the results of the measurements of the rate coefficients for thermal attachment to several perfluoroethers namely perfluorodiglyme (C6F14O3), perfluorotriglyme (C8F18O4), perfluoropolyether (CF3–(OCF(CF3)CF2)n–(OCF2)m–OCF3) and perfluorocrownether ((C2F4O)5). Rate coefficients were obtained under thermal conditions in the temperature range 298–378 K. The increase of the rates with temperature follows the Arrhenius law and the activation energies have been obtained from the slope of the ln(k) vs. 1/T. The respective values of the rate coefficients (at 298 K) and activation energies are as follows: 7.7 ± 1.2 × 10?11 cm3 s?1 (0.18 ± 0.005 eV), 6.7 ± 2.1 × 10?11 cm3 s?1 (0.25 ± 0.004 eV), 2.1 ± 0.2 × 10?10 cm3 s?1 (0.16 ± 0.010 eV), 3.1 × 10?11 cm3 s?1 (0.27 ± 0.003 eV) for C6F14O3, C8F18O4, CF3–(OCF(CF3)CF2)n–(OCF2)m–OCF3 and (C2F4O)5.  相似文献   

11.
Electron paramagnetic resonance (EPR) study of Cu2+ doped bis (glycinato) Mg (II) monohydrate single crystals is carried out at room temperature. Copper enters the lattice substitutionally and is trapped at two magnetically inequivalent sites. The observed spectra are fitted to a spin-Hamiltonian of rhombic symmetry with the following values of the parameters: Cu2+ (I), gx = 2.1577 ± 0.0002, gy = 2.2018 ± 0.0002, gz = 2.3259 ± 0.0002, Ax = (87 ± 2) × 10?4 cm?1, Ay = (107 ± 2) × 10?4 cm?1, Az = (141 ± 2) × 10?4 cm?1; Cu 2+ (II), gx = 2.1108 ± 0.0002, gy = 2.1622 ± 0.0002, gz = 2.2971 ± 0.0002, Ax = (69 ± 2) × 10?4 cm?1, Ay = (117 ± 2) × 10?4 cm?1and Az = (134 ± 2) × 10?4 cm?1. The ground state wave function of the Cu2+ ion in this lattice is evaluated to be predominantly |x2 ? y2. The g-factor anisotropy is also calculated and compared with the experimental value. With the help of the optical absorption study, the nature of bonding in the complex is discussed.  相似文献   

12.
This paper presents a novel thin-film electrolyte of a 2:1 blend of polyetheramine (glyceryl poly(oxypropylene)) and cross-linked oligomeric poly(propylene oxide) diacrylate with LiTFSI. The polyetheramine acts as a surfactant, and can thereby be applied as a conformal coating on complex surfaces—here demonstrated for porous LiFePO4 cathodes—making it useful for 3D-microbatteries. The poly(propylene oxide) diacrylate blends with the surfactant and is easily UV cross-linked, thereby ensuring good mechanical stability. Electrolytes, ~ 2 μm thick, were casted onto LiFePO4 cathodes and cycled against metallic lithium, displaying stable discharge capacities of ~ 8 mAh/g at room temperature and ~ 120 mAh/g at 60 °C. The electrolyte showed conductivities of 3.45 × 10? 6 and 5.80 × 10? 5 S cm? 1 at room temperature and 60 °C, respectively.  相似文献   

13.
The temperature dependence of the rate constant of the inversion substitution reactions CH3X + O2 → CH3O2? + X? (X = SH, NO2), can be expressed as k = 6.8 × 10–12(T/1000)1.49exp(–62816 cal mol–1/RT) cm3 s–1 (X = SH) and k = 6.8 × 10–12(T/1000)1.26 × × exp(–61319 cal mol–1/RT) cm3 s–1 (X = NO2), as found with the use of high-level quantum chemical methods and the transition state theory.  相似文献   

14.
A polycrystalline rare earth double perovskite oxide, strontium cerium antimonate, Sr2CeSbO6 (SCS), is synthesized by solid-state reaction technique. The X-ray diffraction pattern at room temperature of SCS shows orthorhombic phase with the lattice parameters, a = 8.84 Å, b = 6.22 Å, and c = 5.83 Å. Fourier transform infrared spectrum shows two phonon modes of the sample at around 550 cm?1 and 670 cm?1 due to the antisymmetric SbO6 stretching vibration. The compound shows significant frequency dispersion in its dielectric properties. The complex impedance plane plots show that the relaxation (conduction) mechanism in SCS is purely a bulk effect arising from the semiconductive grains having the grain resistance = 3.8 × 106 Ω and the grain capacitance = 1.03 × 10?10 F at 603 K. The frequency-dependent conductivity spectra follow the universal power law. The conductivity at 100 Hz varies from 2 × 10?7 Sm?1 to 1.97 × 10?5 Sm?1 with the increase of temperature from 303 K to 703 K, respectively. The relaxation mechanism of the sample in the framework of electric modulus formalism is modelled by Davidson–Cole equation. The activation energy of the sample, calculated from both conductivity and modulus spectra is found to be ~0.15 eV. Such a value of activation energy indicates that the conduction mechanism for SCS is due to electron hopping. The scaling behaviour of imaginary electric modulus suggests that the relaxation describes the same mechanism at various temperatures.  相似文献   

15.
MgO polyhedral nanocages and nanocrystals, synthesized by non-catalytic simple thermal evaporation process, were used to fabricate high-sensitive amperometric glucose biosensor which showed a high and reproducible sensitivity of 31.6 μA μM?1 cm?2 with a response time less than 5 s, linear dynamic range from 1.0 to 9.0 μM and correlation coefficient of R = 0.9993. The detection limit of fabricated biosensor (based on S/N ratio = 3) was estimated to be 68.3 ± 0.02 nM. To the best of our knowledge, this is the first report which demonstrates the use of MgO nanostructures for the fabrication of glucose biosensor; hence, this work opens a new way to utilize MgO nanostructures as an efficient electron mediator to fabricate efficient glucose biosensors.  相似文献   

16.
Novel anhydrous polymeric proton conductors have been prepared from perfluorosulfonic acid ionomer with polymer solvent as supplying proton pathway through the segmental motion of polymer chains for polymer electrolyte fuel cell (PEFC) application. Since the membranes do not contain liquid-state acid or solvent, the membranes may promise more stable performances during the operation of PEFC. The Nafion-based anhydrous proton conductors showed maximum proton conductivity of about 4.0 × 10?3 S cm?1 at 130 °C under anhydrous condition. The mechanical properties of the membranes were enhanced by introducing H+-doped TiO2 nanoparticles without the conductivity degradation. In addition, the electrochemical properties of the membrane electrode assembly (MEA) employing the anhydrous membrane as ionomer have been investigated, showing stable open circuit voltages (OCVs) over 0.9 V under non-humidified condition.  相似文献   

17.
Potentially useful conducting polymers of sulfonyl substituted phenanthrene derivatives and non-conducting linear polymers, such as, polystyrene and poly(N-vinylcarbazole) have been synthesized and characterized using IR, thermogravimetric and dielectric measurements. The phenanthrene-based benzene, naphthalene and biphenyl copolysulfones have also been prepared and characterized through these techniques. These pendant and backbone polymer sulfones have exceptionally high thermal stability and electrical conductivity, such that dc conductivity in the range 2.80 × 10?16 to 2.82 × 10?7 Ω?1 cm?1 and ac conductivity in the range 1.69 × 10?7 to 2.10 × 10?6 Ω?1 cm?1.  相似文献   

18.
The benefit of near-infrared (NIR) spectroscopy in studies of acid-treated clay minerals is demonstrated. The effects of mineral type, composition and content of non-swelling interlayers on the dissolution rate are investigated. Detailed analysis of the NIR region is performed by comparing the first overtone (2νOH) and combination (ν + δ)OH bands with the fundamental stretching (ν) and bending (ν) vibrations. Spectra of acid-treated samples show a gradual decrease in the intensities of the structural OH overtone (near 7100 cm?1) and combination (4600–4300 cm?1) bands reflecting a fewer number of octahedral atoms. The appearance of the 2νSiOH vibration for terminal (isolated) SiOH groups near 7315 cm?1 indicates the formation of a protonated silica phase. The band near 7130 cm?1 remaining in the spectra of acid-treated samples is assigned to 2νHOSiOH of geminal silanol groups. Thus the creation of geminal silanols, previously detected by 29Si MAS-NMR spectroscopy in acid-treated hectorite, is confirmed also by NIR spectroscopy. The assignment of the 4555 cm?1 band to the (ν + δ)SiOH combination enabled calculation of the wavenumber for the SiO–H bending vibration (~810 cm?1) that is not observable in the mid-IR region due to overlapping with the Si–O band of amorphous silica (~800 cm?1). The NIR spectra confirm that trioctahedral hectorite is much more susceptible to dissolution in HCl than dioctahedral nontronite. The dissolution rate of kaolinite present in the Badin clay as an admixture is lower than that of the main mineral nontronite. The accessibility of the interlayers for protons significantly influences the stability of clay minerals in HCl. Mixed-layered mineral illite/smectite with only 30% of swelling interlayers dissolves more slowly than smectite of similar chemical composition containing mainly swelling interlayers.  相似文献   

19.
We synthesized seven partially protonated poly(aspartic acids)/sodium polyaspartates (P-Asp) with different average molecular weights to study their proton transport properties. The number-average degree of polymerization (DP) for each P-Asp was 30 (P-Asp30), 115 (P-Asp115), 140 (P-Asp140), 160 (P-Asp160), 185 (P-Asp185), 205 (P-Asp205), and 250 (P-Asp250). The proton conductivity depended on the number-average DP. The maximum and minimum proton conductivities under a relative humidity of 70% and 298 K were 1.7 · 10?3 S cm?1 (P-Asp140) and 4.6 · 10?4 S cm?1 (P-Asp250), respectively. Differential thermogravimetric analysis (TG-DTA) was carried out for each P-Asp. The results were classified into two categories. One exhibited two endothermic peaks between t = (270 and 300) °C, the other exhibited only one peak. The P-Asp group with two endothermic peaks exhibited high proton conductivity. The high proton conductivity is related to the stability of the polymer. The number-average molecular weight also contributed to the stability of the polymer.  相似文献   

20.
Molybdenum (0.5 at%) doped indium oxide thin films deposited by spray pyrolysis technique were irradiated by 100 MeV O7+ ions with different fluences of 5×1011, 1×1012 and 1×1013 ions/cm2. Intensity of (222) peak of the pristine film was decreased with increase in the ion fluence. Films irradiated with the maximum ion fluence of 1×1013 ions/cm2 showed a fraction of amorphous nature. The surface microstructures on the surface of the film showed that increase in ion fluence decreases the grain size. Mobility of the pristine molybdenum doped indium oxide films was decreased from ~122 to 48 cm2/V s with increasing ion fluence. Among the irradiated films the film irradiated with the ion fluence of 5×1011 ions/cm2 showed relatively low resistivity of 6.7×10?4 Ω cm with the mobility of 75 cm2/V s. The average transmittance of the as-deposited IMO film is decreased from 89% to 81% due to irradiation with the fluence of 5×1011 ions/cm2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号