首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
An approach of numerical modeling of heterogeneous, functionally graded materials, by using the finite element method, is proposed. The variational formulation is derived from the generic case so that the implementation of material coefficients, which are functions in space, is realized without any further assumptions. An analytical solution for a simple case is presented and used for validation of the numerical model.  相似文献   

2.
Summary  In this contribution, the mechanical behaviour of different ZrO2/NiCr 80 20 compositions is analysed and compared with experimental findings. The microwave-sintered material is found to possess a slightly dominant ceramic matrix for intermediate volume fractions. Its thermal expansion coefficient deviates from the rule of mixture. The modulus and the stress strain behaviour can be simulated by a numerical homogenization procedure, and the influence of residual stresses is found to be negligible. A newly introduced parameter (matricity) describes the mutual circumvention of the phases and is found to strongly control the stress level of the composite, globally as well as locally. Finally, a graded component and a metal/ceramic bi-material are compared for thermal as well as mechanical loading. Received 23 November 1999; accepted for publication 26 May 2000  相似文献   

3.
In this paper, the plane elasticity problem for a crack in a functionally graded strip with material properties varying arbitrarily is studied. The governing equation in terms of Airy stress function is formulated and exact solutions are obtained for several special variations of material properties in Fourier transformation domain. A multi-layered model is employed to model arbitrary variations of material properties based on two linear-distributed material softness parameters. The mixed boundary problem is reduced to a system of singular integral equations that are solved numerically. Comparisons with other two existing multi-layered models have been made. Some numerical examples are given to demonstrate the accuracy, efficiency and versatility of the model. Numerical results show that fracture toughness of materials can be greatly improved by graded variation of elastic modulus and the influence of the specific form of elastic modulus on the fracture behavior of FGM is limited.  相似文献   

4.
Three-dimensional thermomechanical deformations of simply supported, functionally graded rectangular plates are studied by using an asymptotic method. The locally effective material properties are estimated by the Mori–Tanaka scheme. The temperature, displacements and stresses of the plate are computed for different volume fractions of the ceramic and metallic constituents, and they could serve as benchmark results to assess two-dimensional approximate plate theories.  相似文献   

5.
This paper considers the anti-plane (or mode III) crack problem in a functionally graded material strip. The shear modulus of the strip is considered for a class of functional forms for which the equilibrium equation has an analytical solution. The problem is solved by means of singular integral equation technique. Both a single crack and a series of collinear cracks are studied. The results are tabulated and plotted to show the effect of the material nonhomogeneity and crack location on the stress intensity factors.  相似文献   

6.
This paper presents the stress field of a screw dislocation in a medium graded in y-direction. The medium is exponentially graded. For such a graded material theories of elasticity as well as gradient elasticity are applied. By means of the stress function technique we found exact analytical solutions of the corresponding master equations. Using the stress field, the Peach–Koehler force is given. The axial symmetry of a screw dislocation is lost due to the gradation in the y-direction.  相似文献   

7.
Buckling of a column made of functionally graded material is investigated. The functional grading is performed in the longitudinal direction. The following problem is addressed: determine the variation of the elastic modulus with the axial coordinate such that the buckling load exceeds the preselected value. In this study, only polynomial variation of the buckling mode is considered and only the case of cantilever column is treated.  相似文献   

8.
Peng  Wei  Chen  Like  He  Tianhu 《应用数学和力学(英文版)》2021,42(6):855-870
In extreme heat transfer environments, functionally graded materials(FGMs)have aroused great concern due to the excellent thermal shock resistance. With the development of micro-scale devices, the size-dependent effect has become an important issue. However, the classical continuum mechanical model fails on the micro-scale due to the influence of the size-dependent effect. Meanwhile, for thermoelastic behaviors limited to small-scale problems, Fourier's heat conduction law cannot explain the thermal wave effect. In order to capture the size-dependent effect and the thermal wave effect, the nonlocal generalized thermoelastic theory for the formulation of an FGM microbeam is adopted in the present work. For numerical validation, the transient responses for a simply supported FGM microbeam heated by the ramp-type heating are considered.The governing equations are formulated and solved by employing the Laplace transform techniques. In the numerical results, the effects of the ramp-heating time parameter, the nonlocal parameter, and the power-law index on the considered physical quantities are presented and discussed in detail.  相似文献   

9.
The statistics (i.e., mean and variance) of temperature and thermal stress are analytically obtained in functionally graded material (FGM) plates with uncertainties in the thermal conductivity and coefficient of linear thermal expansion. These FGM plates are assumed to have arbitrary nonhomogeneous thermal and mechanical properties through the entire thickness of plate and are subjected to deterministic convective heating. The stochastic temperature and thermal stress fields are analysed by assuming the FGM plate is multilayered with distinct, random thermal conductivity and coefficient of linear thermal expansion in each layer. Vodicka’s method, which is a type of integral transform method, and a perturbation method are employed to obtain the analytical solutions for the statistics. The autocorrelation coefficients of each random property and cross-correlation coefficients between different random properties are expressed in exponential function forms as a non-homogeneous Markov random field of discrete space. Numerical calculations are performed for FGM plates composed of partially stabilised zirconia (PSZ) and austenitic stainless steel (SUS304), which have the largest dispersion of the random properties at the place where the volume fractions of the two constituent materials are both 0.5. The effects of the spatial change in material composition, thermal boundary condition and correlation coefficients on the standard deviations of the temperature and thermal stress are discussed.  相似文献   

10.
The aim of this paper is to provide new results and insights for a screw dislocation in functionally graded media within the gauge theory of dislocations. We present the equations of motion for dislocations in inhomogeneous media. We specify the equations of motion for a screw dislocation in a functionally graded material. The material properties are assumed to vary exponentially along the x and y-directions. In the present work we give the analytical gauge field theoretic solution to the problem of a screw dislocation in inhomogeneous media. Using the dislocation gauge approach, rigorous analytical expressions for the elastic distortions, the force stresses, the dislocation density and the pseudomoment stresses are obtained depending on the moduli of gradation and an effective intrinsic length scale characteristic for the functionally graded material under consideration.  相似文献   

11.
Based on the fundamental dynamic equations of functionally graded material (FGM) cylindrical shell, this paper investigates the sound radiation of vibrational FGM shell in water by mobility method. This model takes into account the exterior fluid loading due to the sound press radiated by the FGM shell. The FGM cylindrical shell was excited by a harmonic line radial force uniformly distributing along the generator. The FGM shell equations of motion, the Helmholtz equation in the exterior fluid medium and the continuity equation at fluid-shell interface are used in this vibroacoustic problem. The expressions of sound radiation efficiency and sound field of the FGM shell have been derived by mobility method. Radiation efficiency, modal mobility and the directivity pattern of the sound field are solved numerically. In particular, radiation efficiency and directivity pattern with various power law index are analyzed.  相似文献   

12.
A meshless collocation method is developed for the static analysis of plane problems of functionally graded (FG) elastic beams and plates under transverse mechanical loads using the differential reproducing kernel (DRK) interpolation, in which the DRK interpolant is constructed by the randomly distributed nodes. A point collocation method based on this DRK interpolation is developed for the plane stress and strain problems of homogeneous and FG elastic beams and plates. It is shown that the present DRK interpolation-based collocation method is indeed a truly meshless approach with excellent accuracy and has a fast convergence rate.  相似文献   

13.
Thermal post-bunkling analyses of functionally graded material rod   总被引:2,自引:0,他引:2  
The non-linear governing differential equations of immovably simply supported functionally graded material (FGM) rod subjected to thermal loads were derived. The thermal post-buckling behaviors of FGM rod made of ZrO2 and Ti-6Al-4Vwere analyzed by shooting method. Firstly, the thermal post-buckling equilibrium paths of the FGM rod with different gradient index in the uniform temperature field were plotted, and compared with the behaviors of the homogeneous rods made of ZrO2 and Ti-6A1-4V materials, respectively. For given value of end rotation angles, the influence of gradient index on the thermal post-buckling behaviors of FGM rod was discussed. Secondly, the thermal post-buckling characteristics of the FGM rod were analyzed when the temperature difference parameter is changed while the bottom temperature parameter remains constant, and when the bottom temperature parameter is changed while the temperature difference parameter remains constant, and compared with the characteristics of the two homogeneous material rods.  相似文献   

14.
Hong-Liang Dai  Ting Dai 《Meccanica》2014,49(5):1069-1081
An analytic study for thermoelastic bending of a functionally graded material (FGM) cylindrical shell subjected to a uniform transverse mechanical load and non-uniform thermal loads is presented. Based on the classical linear shell theory, the equations with the radial deflection and horizontal displacement are derived out. An arbitrary material property of the FGM cylindrical shell is assumed to vary through the thickness of the cylindrical shell, and exact solution of the problem is obtained by using an analytic method. For the FGM cylindrical shell with fixed and simply supported boundary conditions, the effects of mechanical load, thermal load and the power law exponent on the deformation of the FGM cylindrical shell are analyzed and discussed.  相似文献   

15.
This paper discusses evaluation of influence of microscopic uncertainty on a homogenized macroscopic elastic property of an inhomogeneous material. In order to analyze the influence, the perturbation-based homogenization method is used. A higher order perturbation-based analysis method for investigating stochastic characteristics of a homogenized elastic tensor and an equivalent elastic property of a composite material is formulated.As a numerical example, macroscopic stochastic characteristics such as an expected value or variance, which is caused by microscopic uncertainty in material properties, of a homogenized elastic tensor and homogenized equivalent elastic property of unidirectional fiber reinforced plastic are investigated. The macroscopic stochastic variation caused by microscopic uncertainty in component materials such as Young’s modulus or Poisson’s ratio variation is evaluated using the perturbation-based homogenization method. The numerical results are compared with the results of the Monte-Carlo simulation, validity, effectiveness and a limitation of the perturbation-based homogenization method is investigated. With comparing the results using the first-order perturbation-based method, effectiveness of a higher order perturbation is also investigated.  相似文献   

16.
A multi-layered model for frictionless contact analysis of functionally graded materials (FGMs) with arbitrarily varying elastic modulus under plane strain-state deformation has been developed. Based on the fact that an arbitrary curve can be approached by a series of continuous but piecewise linear curves, the FGM is divided into several sub-layers and in each sub-layers the shear modulus is assumed to be linear function while the Poisson’s ratio is assumed to be a constant. With the model, the frictionless contact problem of a functionally graded coated half-space is investigated. By using the transfer matrix method and Fourier integral transform technique, the problem is reduced to a Cauchy singular integral equation. The contact pressure, contact region and indentation are calculated for various indenters by solving the equations numerically.  相似文献   

17.
This paper focuses on the evaluation of the homogeneous properties of the active layer in Macro Fiber Composite (MFC) transducers using finite element periodic homogenization. The proposed method is applied to both d31 and d33-MFCs and the results are compared to previously published analytical mixing rules, showing a good agreement. The main advantages of the finite element homogenization is the possibility to take into account local details in the representative volume element such as complicated electrode patterns or local variations of the poling direction due to curved electric field lines. Although these influences have been found to be rather small in the present study, the method presented is useful for a better understanding of the behavior of piezocomposite transducers.  相似文献   

18.
The asymptotic development method is applied to analyze the free vibration of non-uniform axially functionally graded(AFG) beams, of which the governing equations are differential equations with variable coefficients. By decomposing the variable flexural stiffness and mass per unit length into reference invariant and variant parts, the perturbation theory is introduced to obtain an approximate analytical formula of the natural frequencies of the non-uniform AFG beams with different boundary conditions.Furthermore, assuming polynomial distributions of Young's modulus and the mass density, the numerical results of the AFG beams with various taper ratios are obtained and compared with the published literature results. The discussion results illustrate that the proposed method yields an effective estimate of the first three order natural frequencies for the AFG tapered beams. However, the errors increase with the increase in the mode orders especially for the cases with variable heights. In brief, the asymptotic development method is verified to be simple and efficient to analytically study the free vibration of non-uniform AFG beams, and it could be used to analyze any tapered beams with an arbitrary varying cross width.  相似文献   

19.
功能梯度材料板件三维分析的半解析梯度有限元法   总被引:1,自引:0,他引:1  
将半解析有限元与梯度有限元相结合,形成一种半解析梯度有限元来求解功能梯度材料板件问题。该方法兼有有限元法的适应性强、程序统一,半解析有限元法的节省单元与计算工作量,梯度有限元法的适应构件内部材料性能任意梯度分布等特点,并实现用一维数值计算给出构件三维分析结果。算例分析表明了方法的精度、功能与上述特点,充分揭示了功能梯度材料板件力学响应的三维形态。半解析梯度有限元法可推广应用到其他功能梯度材料面结构的各类分析中。  相似文献   

20.
Large deformation of a cantilever axially functionally graded(AFG) beam subject to a tip load is analytically studied using the homotopy analysis method(HAM).It is assumed that its Young's modulus varies along the longitudinal direction according to a power law. Taking the solution of the corresponding homogeneous beam as the initial guess and obtaining a convergence region by adjusting an auxiliary parameter,the analytical expressions for large deformation of the AFG beam are provided. Results obtained by the HAM are compared with those obtained by the finite element method and those in the previous works to verify its validity. Good agreement is observed. A detailed parametric study is carried out. The results show that the axial material variation can greatly change the deformed configuration, which provides an approach to control and manage the deformation of beams. By tailoring the axial material distribution, a desired deformed configuration can be obtained for a specific load. The analytical solution presented herein can be a helpful tool for this procedure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号