首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Developed in this note is a theoretical model describing the mobility of a misfit screw dislocation dipole in a wire composite consisting of a stiff cylindrical substrate covered by a soft co-axial cylindrical film. A critical value of the film thickness, which is a function of the parameter measuring the stiffness of the film with respect to the substrate, is identified. It is observed that: (i) there exist two equilibrium positions of the misfit dislocation dipole (one stable and the other one unstable) when the film is thicker than the critical value; (ii) the two equilibrium positions of the misfit dislocation dipole converge to a single saddle point equilibrium position which is neither stable nor unstable when the thickness of the film is at the critical value; (iii) there exists no equilibrium position of the misfit dislocation dipole when the thickness of the film is below the critical value. These features could be useful to the design of wire composites and to the dislocation-related plasticity analysis.  相似文献   

2.
We investigate the stability of a misfit screw dislocation dipole in a coated fibrous composite. The fiber is stiffer whereas the coating is more compliant than the matrix. A critical coating thickness is identified for given material parameters of the composite. For a compliant coating below the critical thickness, there exist an inner unstable and an outer stable equilibrium position in the matrix for the dislocation dipole. However, for a compliant coating above the critical thickness, the dislocation dipole will be attracted to the coating–matrix interface. If the coating thickness is greater than the inclusion radius, the dislocation dipole cannot lodge in the matrix no matter what values of the material parameters are chosen.  相似文献   

3.
4.
The elastic strain and stress fields associated with nanoscale compositional modulation in an anisotropic epitaxial film on an anisotropic substrate are obtained by using Stroh formalism and the Eshelby-type inclusion method. The composition of the epitaxial film is considered to periodically fluctuate in a surface soft mode, with the amplitude of the composition modulation maximal near the growing surface and decreasing exponentially into the film. It has been experimentally observed that the composition modulation affects the formation of a new type of crystal defects, i.e., misfit dislocation dipoles, in III–V compound semiconductor materials. The formation energy of a misfit dislocation dipole under the elastic fields due to the composition modulation is calculated in this study. It is composed of the core and self energies of two dislocations, the interaction energy between two dislocations, and the interaction energies between the composition modulation and two dislocations. Numerical calculations are performed for a dislocation dipole in a lattice-matched Ga0.5In0.5P film on a GaAs substrate.  相似文献   

5.
Imagine a residual glide twin interface advancing in a grain under the action of a monotonic stress. Close to the grain boundary, the shape change caused by the twin is partly accommodated by kinks and partly by slip emissions in the parent; the process is known as accommodation effects. When reached by the twin interface, slip dislocations in the parent undergo twinning shear. The twinning shear extracts from the parent dislocation a twinning disconnection, and thereby releases a transmuted dislocation in the twin. Transmutation populates the twin with dislocations of diverse modes. If the twin deforms by double twinning, double-transmutation occurs even if the twin retwins by the same mode or detwins by a stress reversal. If the twin deforms only by slip, transmutation is single. Whether single or double, dislocation transmutation is irreversible. The multiplicity of dislocation modes increases upon strain, since the twin finds more dislocations to transmute upon further slip of the parent and further growth of the twin. Thus, the process induces an increasing latent hardening rate in the twin. Under profuse twinning conditions, typical of double-lattice structures, this rate-increasing latent hardening combined with crystal rotation to hard orientations by twinning is consistent with a regime of increasing hardening rate, known as Regime II or Regime B. In this paper, we formulate governing equation of the above transmutation and accommodation effects in a crystal plasticity framework. We use the dislocation density based model originally proposed by Beyerlein and Tomé (2008) to derive the effect of latent hardening in a transmuting twin. The theory is expected to contribute to surmounting the difficulty that current models have to simultaneously predict under profuse twinning, the stress-strain curves, intermediate deformation textures, and intermediate twin volume fractions.  相似文献   

6.
Within continuum dislocation theory the plastic deformation of a single crystal with one active slip system under plane-strain constrained shear is investigated. By introducing a twinning shear into the energy of the crystal, we show that in a certain range of straining the formation of deformation twins becomes energetically preferable. An energetic threshold for the onset of twinning is determined. A rough analysis qualitatively describes not only the evolving volume fractions of twins but also their number during straining. Finally, we analyze the evolution of deformation twins and of the dislocation network at non-zero dissipation. We present the corresponding stress-strain hysteresis, the evolution of the plastic distortion, the twin volume fractions and the dislocation densities.  相似文献   

7.
The plastic flow stability of nanotwinned Cu foils was investigated via room temperature rolling. Nanotwinned Cu, with an average twin thickness of 5 nm, exhibited stable plastic flow without shear localization or fracture, even at thickness reduction of over 50%. The retention of {1 1 1} fiber texture after rolling indicates insignificant out-of-plane rotation of the columnar grains and is interpreted in terms of a symmetric slip model. No significant change in the average twin lamellae thickness was seen even at thickness reduction of over 50%, suggesting that some twin boundaries were annihilated during deformation. The annihilation of very thin twins is a consequence of migration of twin boundaries due to the glide of twinning dislocations (disconnections) in the twin plane. The work hardening after rolling is correlated with the dislocation storage at twin boundaries.  相似文献   

8.
A model is developed for thermomechanical behavior of defective, low-symmetry ceramic crystals such as αα-corundum. Kinematics resolved are nonlinear elastic deformation, thermal expansion, dislocation glide, mechanical twinning, and residual lattice strains associated with eigenstress fields of defects such as dislocations and stacking faults. Multiscale concepts are applied to describe effects of twinning on effective thermoelastic properties. Glide and twinning are thermodynamically irreversible, while free energy accumulates with geometrically necessary dislocations associated with strain and rotation gradients, statistically stored dislocations, and twin boundaries. The model is applied to describe single crystals of corundum. Hardening behaviors of glide and twin systems from the total density of dislocations accumulated during basal slip are quantified for pure and doped corundum crystals. Residual lattice expansion is predicted from nonlinear elasticity and dislocation line and stacking fault energies.  相似文献   

9.
The low-temperature (less than one-fourth of the melting temperature) creep deformation behavior of hexagonally close-packed (HCP) α-Ti–1.6 wt.% V was investigated. Creep tests were performed at various temperatures between room temperature and 205 °C at 95% of the respective yield stress at the different temperatures. The creep strain rate was found to increase with increasing temperature. Scanning and transmission electron microscopy revealed that slip and unusually slow twin growth, or time-dependent twinning, are active deformation mechanisms for the entire temperature range of this investigation. The activation energy for creep of this alloy was calculated to identify the rate-controlling deformation mechanism, and was found to increase with increasing creep strain. At low strain, the activation energy for creep was found to be close to the previously calculated activation energy for slip. At high strain, the calculated activation energy indicates that both slip and twinning are significant deformation mechanisms. The appearance of twinning at high strains is explained by a model for twin nucleation by dislocation pileups.  相似文献   

10.
11.
The effect of changes in density of twinning dislocations on one boundary of the wedge twin on the configuration of the stress fields generated by the latter is considered on the basis of a macroscopic dislocation model. Specific features of violation of symmetry of the stress-field distribution near the wedge twin with different shapes of the boundaries are demonstrated for the case of different densities of twinning dislocations on the twin boundaries. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 49, No. 5, pp. 199–204, September–October, 2008.  相似文献   

12.
13.
In this work, a single crystal constitutive law for multiple slip and twinning modes in single phase hcp materials is developed. For each slip mode, a dislocation population is evolved explicitly as a function of temperature and strain rate through thermally-activated recovery and debris formation and the associated hardening includes stage IV. A stress-based hardening law for twin activation accounts for temperature effects through its interaction with slip dislocations. For model validation against macroscopic measurement, this single crystal law is implemented into a visco-plastic-self-consistent (VPSC) polycrystal model which accounts for texture evolution and contains a subgrain micromechanical model for twin reorientation and morphology. Slip and twinning dislocations interact with the twin boundaries through a directional Hall–Petch mechanism. The model is adjusted to predict the plastic anisotropy of clock-rolled pure Zr for three different deformation paths and at four temperatures ranging from 76 K to 450 K (at a quasi-static rate of 10−3 1/s). The model captures the transition from slip-dominated to twinning-dominated deformation as temperature decreases, and identifies microstructural mechanisms, such as twin nucleation and twin–slip interactions, where future characterization is needed.  相似文献   

14.
This paper explores the mechanisms of the residual stress generation in thin film systems with large lattice mismatch strain, aiming to underpin the key mechanism for the observed variation of residual stress with the film thickness. Thermal mismatch, lattice mismatch and interface misfit dislocations caused by the disparity of the material layers were investigated in detail. The study revealed that the thickness-dependence of the residual stresses found in experiments cannot be elucidated by thermal mismatch, lattice mismatch, or their coupled effect. Instead, the interface misfit dislocations play the key role, leading to the variation of residual stresses in the films of thickness ranging from 100 nm to 500 nm. The agreement between the theoretical analysis and experimental results indicates that the effect of misfit dislocation is far-reaching and that the elastic analysis of dislocation, resolved by the finite element method, is sensible in predicting the residual stress distribution. It was quantitatively confirmed that dislocation density has a significant effect on the overall film stresses, but dislocation distribution has a negligible influence. Since the lattice mismatch strain varies with temperature, it was finally confirmed that the critical dislocation density that leads to the measured residual stress variation with film thickness should be determined from the lattice mismatch strain at the deposition temperature.  相似文献   

15.
钒合金(V-Cr-Ti)作为潜在重要的聚变反应堆用结构材料, 近年来受到广泛的关注. 为了研究 V-5Cr-5Ti 合金不同应变率压缩下的应变硬化行为, 特别是孪生对塑性变形的影响, 以位错密度和孪晶演化为基础, 建立了该合金的应变硬化模型. 模型中考虑了孪晶中的位错滑移对材料塑性应变的贡献. 模拟结果表明, 由于孪生诱发塑性, 从而使动态压缩时的位错密度小于准静态加载时的, 这使得 V-5Cr-5Ti 合金在动态压缩时的应变硬化率比准静态加载时的小. 当孪晶形成后, 位错滑移引起的塑性应变率随应变增大而增大, 并逐渐接近加载应变率, 而孪生引起的塑性应变率则随应变增大而减小.   相似文献   

16.
The influence of disbalance of densities of twinning dislocations at the boundaries on the stressed state inside a wedgeshaped twin, near its top, and in external regions adjoining the twinning boundary is studied using a dislocation model.  相似文献   

17.
In this paper, molecular dynamics (MD) calculations have been used to examine the physics behind continuum models of misfit dislocation formation and to assess the limitations and consequences of approximations made within these models. Without compromising the physics of misfit dislocations below a surface, our MD calculations consider arrays of dislocation dipoles constituting a mirror imaged “surface”. This allows use of periodic boundary conditions to create a direct correspondence between atomistic and continuum representations of dislocations, which would be difficult to achieve with free surfaces. Additionally, by using long-time averages of system properties, we have essentially reduced the errors of atomistic simulations of large systems to “zero”. This enables us to deterministically compare atomistic and continuum calculations. Our work results in a robust approach that uses atomistic simulation to accurately calculate dislocation core radius and energy without the continuum boundary conditions typically assumed in the past, and the novel insight that continuum misfit dislocation models can be inaccurate when incorrect definitions of dislocation spacing and Burgers vector in lattice-mismatched systems are used. We show that when these insights are properly incorporated into the continuum model, the resulting energy density expression of the lattice-mismatched systems is essentially indistinguishable from the MD results.  相似文献   

18.
Symmetrical stress representation in the Stroh formalism for anisotropic elastic bodies is introduced and the range of its applicability is analysed. By making use of this stress representation new formulae for influence functions giving stresses in an infinite anisotropic medium subjected to a straight dislocation and a straight dislocation dipole are derived. The advantage of the new formulae is that they explicitly show the symmetrical structure of these influence functions not referred to previously. Relations of these influence functions to influence functions giving stresses and Airy stress function due to a straight wedge disclination, whose explicit expressions are also introduced, are derived. Application of these results in computation of stresses by the hypersingular and regularized Somigliana stress identities is discussed. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

19.
A criterion for the onset of deformation twinning (DT) is derived within the Peierls framework for dislocation emission from a crack tip due to Rice (J. Mech. Phys. Solids 40(2) (1992) 239). The critical stress intensity factor (SIF) is obtained for nucleation of a two-layer microtwin, which is taken to be a precursor to DT. The nucleation of the microtwin is controlled by the unstable twinning energyγut, a new material parameter identified in the analysis. γut plays the same role for DT as γus, the unstable stacking energy introduced by Rice, plays for dislocation emission. The competition between dislocation emission and DT at the crack tip is quantified by the twinning tendencyT defined as the ratio of the critical SIFs for dislocation nucleation and microtwin formation. DT is predicted when T>1 and dislocation emission when T<1. For the case where the external loading is proportional to a single load parameter, T is proportional to . The predictions of the criterion are compared with atomistic simulations for aluminum of Hai and Tadmor (Acta Mater. 51 (2003) 117) for a number of different crack configurations and loading modes. The criterion is found to be qualitatively exact for all cases, predicting the correct deformation mode and activated slip system. Quantitatively, the accuracy of the predicted nucleation loads varies from 5% to 56%. The sources of error are known and may be reduced by appropriate extensions to the model.  相似文献   

20.
The plane elastic problem of a circular inhomogeneity with an imperfect interface of spring-constant-type is reduced to the solution of a Somigliana dislocation problem, when the solution for the corresponding problem with a perfect interface is known. The Burger's vector of the Somigliana dislocation is determined so that its components satisfy two interfacial conditions involving the traction components of the corresponding problem with a perfect interface. Employing complex variables, a two-phase potential solution to the Somigliana dislocation inhomogeneity problem is developed for a general form of the Burger's vector. Detailed results are reported for a uniform eigenstrain in the inhomogeneity, and for a remote uniform heat flow in the matrix. In the latter case, the inhomogeneity behaves as a void, when it begins to slide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号