首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A general geometrically exact nonlinear theory for the dynamics of laminated plates and shells under-going large-rotation and small-strain vibrations in three-dimensional space is presented. The theory fully accounts for geometric nonlinearities by using the new concepts of local displacements and local engineering stress and strain measures, a new interpretation and manipulation of the virtual local rotations, an exact coordinate transformation, and the extended Hamilton principle. Moreover, the model accounts for shear coupling effects, continuity of interlaminar shear stresses, free shear-stress conditions on the bonding surfaces, and extensionality. Because the only differences among different plates and shells are the initial curvatures of the coordinates used in the modeling and all possible initial curvatures are included in the formulation, the theory is valid for any plate or shell geometry and contains most of the existing nonlinear and shear-deformable plate and shell theories as special cases. Five fully nonlinear partial-differential equations and corresponding boundary and corner conditions are obtained, which describe the extension-extension-bending-shear-shear vibrations of general laminated two-dimensional structures and display linear elastic and nonlinear geometric coupling among all motions. Moreover, the energy and Newtonian formulations are completely correlated in the theory.  相似文献   

2.
A theoretical framework for the hierarchical multiscale modeling of inelastic response of heterogeneous materials is presented. Within this multiscale framework, the second gradient is used as a nonlocal kinematic link between the response of a material point at the coarse scale and the response of a neighborhood of material points at the fine scale. Kinematic consistency between these scales results in specific requirements for constraints on the fluctuation field. The wryness tensor serves as a second-order measure of strain. The nature of the second-order strain induces anti-symmetry in the first-order stress at the coarse scale. The multiscale internal state variable (ISV) constitutive theory is couched in the coarse scale intermediate configuration, from which an important new concept in scale transitions emerges, namely scale invariance of dissipation. Finally, a strategy for developing meaningful kinematic ISVs and the proper free energy functions and evolution kinetics is presented.  相似文献   

3.
A single asymptotic derivation of three classical nonlinear plate theories is presented in a setting which preserves the frame-invariance properties of three-dimensional finite elasticity. By a successive scaling of the external loading on the three-dimensional body, the nonlinear membrane theory, the nonlinear inextensional theory and the von Kármán equations are derived as the leading-order terms in the asymptotic expansion of finite elasticity. The governing equations of the nonlinear inextensional theory are of particular interest where 1) plane-strain kinematics and plane-stress constitutive equations are derived simultaneously from the asymptotic analysis, 2) the theory can be phrased as a minimization problem over the space of isometric deformations of a surface, and 3) the local equilibrium equations are identical to those arising in the one-director Cosserat shell model. Furthermore, it can be concluded that with a regular, single-scale asymptotic expansion it is not possible to obtain a system of plate equations in which finite membrane strain and finite bending strain occur simultaneously in the leading-order term of an asymptotic analysis.  相似文献   

4.
5.
A new formulation of the general solution to Burgers'' equation   总被引:1,自引:0,他引:1  
We present a new method to solve Burgers' equation in one space dimension for an arbitrary incident pulse of finite length. It is based on Cole-Hopf linearization and Fourier analysis of the pulse in a special set of orthogonal functions. Each of these functions corresponds to a stable, well behaved, solitary wave solution of Burgers' equation. After Cole-Hopf back-transformation the Fourier series of the pulse gives an exact solution of Burgers' equation, valid all the way from the boundary, through the shock-forming phase, the subsequent damping phase and all the way to infinity. The solution also provides a basis for qualitative discussions of the evolution of arbitrary pulses.  相似文献   

6.
In this research, the incorporation of material anisotropy is proposed for the large-deformation analyses of highly flexible dynamical systems. The anisotropic effects are studied in terms of a generalized elastic forces (GEFs) derivation for a continuum-based, thick, and fully parameterized absolute nodal coordinate formulation plate element, of which the membrane and bending deformation effects are coupled. The GEFs are first derived for a fully anisotropic, linearly elastic material, characterized by 21 independent material parameters. Using the same approach, the GEFs are obtained for an orthotropic material, characterized by nine material parameters. Furthermore, the analysis is extended to the case of nonlinear elasticity; the GEFs are introduced for a nonlinear Cauchy-elastic material, characterized by four in-plane orthotropic material parameters. Numerical simulations are performed to validate the theory for statics and dynamics and to observe the anisotropic responses in terms of displacements, stresses, and strains. The presented formulations are suitable for studying the nonlinear dynamical behavior of advanced elastic materials of an arbitrary degree of anisotropy.  相似文献   

7.
A two-dimensional model that takes into account the 1-D behaviour of the cord, is presented for the analysis of cord-composite plates. The cords are represented by an equivalent geometrical surface having the mechanical characteristics including bending property and the coupling between twist-extension. The non-symmetrical position of the cord within the cord-composite plate is also considered. Examples of cord-composite plates consisting of one central layer, two symmetrical layers, and two non-symmetrical layers are studied, and the results are presented to illustrate the coupling effects on the mechanical behaviour.  相似文献   

8.
9.
10.
Many materials for specialized applications exhibit a body-centered cubic structure; e.g., tantalum, vanadium, barium and chromium. In addition, the successful modeling of body-centered cubic (bcc) metals is a necessary step toward modeling of common structural materials such as iron. Implicit formulations for this class of materials exist [e.g., Stainier, L., Cuitiño, A., Ortiz, M., 2002. A micromechanical model of hardening, rate sensitivity, and thermal softening in bcc crystals. Journal of the Mechanics and Physics of Solids 50 (7), 1511–1545; Kuchnicki, S., Radovitzky, R., Cuitiño, A., Strachan, A., Ortiz, M., 2007. A pressure-dependent multiscale model for bcc metals], but are impractical to resolve large-scale dynamic deformation processes. In this article, we describe a procedure analogous to Kuchnicki et al. [Kuchnicki, S., Cuitiño, A., Radovitzky, R., 2006. Efficient and robust constitutive integrators for single-crystal plasticity modeling. International Journal of Plasticity 22 (10), 1988–2011]. wherein we construct an explicit formulation for the multiscale physics models. This update is based on the model of Kuchnicki et al. (in preparation) using a power law representation for the plastic slip rates. The existing implicit form of the model provides qualitative matching with experiments at quasi-static strain rates. The model is recast in an explicit form and applied first to a high quasi-static strain rate to verify that the two forms of the model return similar predictions for similar input parameters. The explicit model is also applied to several high strain rates, showing that it captures characteristic features observed in experimental tests of high-rate deformations, such as the drop in stress immediately after yield that is present in split Hopkinson pressure bar (SHPB) experiments. This test provides qualitative evidence that the model is suitable for high-strain-rate applications. The utility of the model is further demonstrated by a one-dimensional simulation of a SHPB test. Finally, a test case modeling pressure impact of a Tantalum plate using 600,000 elements is shown. The simulations show that the explicit model is capable of recovering the salient features of the experiments while integrating the constitutive update in a robust manner.  相似文献   

11.
In the present paper, the geometric nonlinear formulation is developed for dynamic stiffening of a rectangular plate undergoing large overall motions. The dynamic equations, which take into account the stiffening terms, are derived based on the virtual power principle. Finite element method is employed for discretization of the plate. The simulation results of a rotating rectangular plate obtained by using such geometric nonlinear formulation are compared with those obtained by the conventional linear method without consideration of the stiffening effects. The application limit of the conventional linear method is clarified according to the frequency error. Furthermore, the accuracy of the assumed mode method is investigated by comparison of the results obtained by using the present finite element method and those obtained by using the assumed mode method.  相似文献   

12.
This paper discusses the elastic equilibrium problems of anisotropic skew thin plate ofvariable thickness simply supported on all four sides in nonlinear theories,and uses theNavier method to seek an approach to the problem,and to illustrate the solution with theexamples.In conclusion,the mention is made of the scope of application and theconvergency of the solution.  相似文献   

13.
A unified thermodynamic framework for gradient plasticity theories in small deformations is provided, which is able to accommodate (almost) all existing strain gradient plasticity theories. The concept of energy residual (the long range power density transferred to the generic particle from the surrounding material and locally spent to sustain some extra plastic power) plays a crucial role. An energy balance principle for the extra plastic power leads to a representation formula of the energy residual in terms of a long range stress, typically of the third order, a macroscopic counterpart of the micro-forces acting on the GNDs (Geometrically Necessary Dislocations). The insulation condition (implying that no long range energy interactions are allowed between the body and the exterior environment) is used to derive the higher order boundary conditions, as well as to ascertain a principle of the plastic power redistribution in which the energy residual plays the role of redistributor and guarantees that the actual plastic dissipation satisfies the second thermodynamics principle. The (nonlocal) Clausius-Duhem inequality, into which the long range stress enters aside the Cauchy stress, is used to derive the thermodynamic restrictions on the constitutive equations, which include the state equations and the dissipation inequality. Consistent with the latter inequality, the evolution laws are formulated for rate-independent models. These are shown to exhibit multiple size effects, namely (energetic) size effects on the hardening rate, as well as combined (dissipative) size effects on both the yield strength (intrinsic resistance to the onset of plastic strain) and the flow strength (resistance exhibited during plastic flow). A friction analogy is proposed as an aid for a better understanding of these two kinds of strengthening effects. The relevant boundary-value rate problem is addressed, for which a solution uniqueness theorem and a minimum variational principle are provided. Comparisons with other existing gradient theories are presented. The dissipation redistribution mechanism is illustrated by means of a simple shear model.  相似文献   

14.
15.
In order to formulate the equations for the study here, the Fourier expansions upon the system of orthonormal polynomials areused.It may be considerably convenient to obtain the expressions of displacements as well as stresses directly from the solutions.Based on the principle of virtual work the equilibrium equations of various orders are formulated. In particular, the system of third-order is given in detail, thus providing the reference for accuracy analysis of lower-order equations. A theorem about the differentiation of Legendre series term by term is proved as the basis of mathematical analysis. Therefore the functions used are specified and the analysis rendered is no longer a formal one.The analysis will show that the Kirchhoff-Love’s theory is merely of the first-order and the theory which includes the transverse deformation but keeps the normal straight is essentially of the first order, too.  相似文献   

16.
This work focuses upon the development of a wavelet-based variant of the variational multiscale method (VMS) for accurate and efficient large eddy simulation (LES) called wavelet-based VMS-LES (WMS-LES). This approach has been incorporated within the framework of a high-order incompressible flow solver based upon the pressure-stabilized discontinuous Galerkin finite element method (DG-FEM). The VMS approach is designed to produce an a priori scale separation of the governing equations, in a manner which makes no assumptions on either the boundary conditions or the mesh uniformity. Using second-generation wavelets (SGWs) elementwise for scale separation ensures, on one hand, the preservation of the computational compactness of the DG-FEM scheme and, on the other hand, the ability to achieve scale separation in wavenumber space. The optimal space-frequency localization property of the SGW provides an improvement over the commonly used Legendre polynomials. The suitability of the elementwise SGW scale-separation operation as a tool for error indication has been demonstrated in an h-adaptive computation of the reentrant corner test case. Finally, the DG-FEM solver and the WMS-LES method have been assessed through simulations upon the three-dimensional Taylor-Green vortex test case. Our results indicate that the WMS-LES approach exhibits a distinct improvement over the monolevel LES approach. This effect is not produced by a change in the magnitude of the subgrid dissipation but rather by the redistribution of the subgrid dissipation in wavenumber space.  相似文献   

17.
In this paper, we present a finite element formulation for describing the large deformation torsional response of biphasic materials, with specific application to prediction of nonlinear coupling between torsional deformation and fluid pressurization in articular cartilage. Due to the use of a cylindrical coordinate system, a particular challenge arises in the linearization of the weak form. The torsional axisymmetric case considered gives rise to additional geometric terms, which are important for the robustness of the numerical implementation and that would not be present in a Cartesian formulation. A detailed derivation of this linearization process is given, couched in the context of a variational formulation suitable for finite element implementation. A series of numerical parametric studies are presented and compared to experimental measurements of the time dependent response of cartilage.  相似文献   

18.
A functional is derived for development of stress hybrid finite elements for plate buckling problems. The equilibrium equations inside the element are identically satisfied in terms of Southwell stress functionsand the transverse displacement. Along the boundary of the element further displacement and normal slope functions are employed. These functions are so chosen as to satisfy the interelement compatibility requirements when the elements are connected. The boundary and internal displacements are selected entirely independently and comments are made on the choice of interpolation functions for the internal displacement.The stationarity of the functional is shown to lead to satisfaction of the equilibrium conditions along interelement boundaries, and the compatibility conditions inside the elements. The paper includes the details of a simple rectangular element and the results of a number of plate buckling problems analysed by the developed element.  相似文献   

19.
Beiranvand  H.  Hosseini  S. A. A. 《Meccanica》2022,57(8):2131-2154
Meccanica - In this paper, a set of generalized nonlinear equations of motion for Timoshenko spinning beams (shafts) is derived by using the concept of geometrically exact theory. After...  相似文献   

20.
A variational formulation of the coupled thermo-mechanical boundary-value problem for general dissipative solids is presented. The coupled thermo-mechanical boundary-value problem under consideration consists of the equilibrium problem for a deformable, inelastic and dissipative solid with the heat conduction problem appended in addition. The variational formulation allows for general dissipative solids, including finite elastic and plastic deformations, non-Newtonian viscosity, rate sensitivity, arbitrary flow and hardening rules, as well as heat conduction. We show that a joint potential function exists such that both the conservation of energy and the balance of linear momentum equations follow as Euler-Lagrange equations. The identification of the joint potential requires a careful distinction between equilibrium and external temperatures, which are equal at equilibrium. The variational framework predicts the fraction of dissipated energy that is converted to heat. A comparison of this prediction and experimental data suggests that α-titanium and Al2024-T conform to the variational framework.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号