首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to evaluate the strength of fiber-reinforced composites, there is first the need to investigate the interfacial debonding and the pull-out of fibers in a fractured composite with intact fibers. This type of problem in crack bridging has been investigated by several authors based on different models and assumptions [1–7]. In this study, we will consider a three-dimensional model of a single fiber of finite length bonded by a finite cylindrical matrix with an initial crack existing in a portion of the interface. In the model, one end of the cylinder is so constrained that the axial component of displacement vanishes. A tensile stress is applied to the fiber at the other end. The aim is to determine the pull-out of the fiber and the critical condition for interfacial debonding. Both the fiber and the matrix are treated as elastic materials. Analysis is made based on a method using Papkovich-Neuber displacement potential functions for the problem of an elastic solid subjected to axisymmetrical boundary conditions. Solutions are found by means of the technique of trigonometrical series. Effects of initial misfit strains and frictional sliding between the fiber and the matrix over the interfacial crack are also included in the study.  相似文献   

2.
The aim of the present paper is to provide a quantitative prediction of the elastic-damage behaviour of randomly oriented fiber polymer composites. A constitutive model based on micromechanical considerations is presented. The nucleation and growth of voids induced by progressive fiber debonding is combined with the constitutive relationship. Failure resulting of excessive damage accumulation is captured by a critical void volume criterion and a vanishing element technique. Experimentally, damage accumulation in random glass fiber–polyester composites was monitored by a videoextensometry technique able to control the local strain rate. Good agreement of model predictions with experimental data is pointed out. The model was implemented into a finite element program and numerical applications on composite structures (a tensile specimen and a plate containing a central hole) are presented to illustrate the capability of the approach. Digital image correlation method was also used to measure the full-field strain in a notched specimen under tensile loading. The simulated results compared favourably with those obtained from experiments.  相似文献   

3.
Dynamic delamination of thick fiber reinforced polymeric matrix composite laminates is investigated using optical techniques and high-speed photography. The laminates used in this work are graphite/epoxy fiber reinforced, 65 percent fiber volume fraction, composite plates consisting of 48 plies (6 mm plate thickness). Two different laminate layups are tested: a quasi-isotropic arrangement and a unidirectional arrangement. The experimental setup consists of 152 mm×152 mm square plates impact loaded in an outof-plane configuration using a high-speed gas gun. Impact speeds range from 1 m/s to 30 m/s. Real-time imaging of the laminate out-of-pane displacement is performed using the lateral shearing interferometer of coherent gradient sensing (CGS) in conjunction with high-speed photography. Onset of dynamic delamination can be observed, and quantities such as delamination speeds (in some cases up to 1800 m/s) are measured and reported. A brief comparison is made with dynamic fracture experiments of the same material conducted in a separate study.  相似文献   

4.
为了建立纤维增强复合材料风机叶片宏观性能和细观组分的直接关联,得到一般有限元分析时无法获得的细观参量值,利用FORTRAN程序把细观力学的失效/损伤分析模块,嵌入到有限元软件ABAQUS中的USD‐FLD 用户子程序中,建立了风机叶片宏细观一体化模型。该模型能够实现基于细观组分级损伤/失效判据的宏细观渐进损伤分析和强度预报功能。该模型计算结果与文献中的试验结果有较好的一致性。  相似文献   

5.
This study deals with three-scale composite materials comprised of nonlinear constituents. At the meso scale the composite can be considered as locally homogeneous with a macroscopic spatial variation of the constituents volume fraction. When these variations about a mean value are small, a Taylor expansion to second-order of the effective properties of the composite with respect to the fluctuations is given. This expansion can be used to discuss the beneficial or deleterious effects of clusters of inhomogeneities. It can also be used to derive new upper and lower bounds for the effective properties of nonlinear composites from dilute results. To cite this article: P. Suquet, C. R. Mecanique 333 (2005).  相似文献   

6.
经典唯象强度理论适用于正交各向异性线弹性体.对于非线性纤维增强复合材料,通过加卸载试验和损伤力学的分析方法,可以得到一种虚拟的线性化应力-应变关系;依据损伤等效假设,针对线性损伤和非线性损伤,对基于应力的经典二次失效准则进行变换,建立了一种基于损伤的强度理论,即"D失效判据",这一强度理论可以作为经典判据的补充和扩展.针对平纹编织C/SiC复合材料的拉/剪组合试验,进行了实例计算,结果表明:利用D失效判据预测的失效包络线比蔡-希尔准则的预测曲线低,而且,失效曲线的形式与材料的损伤演化规律相关.  相似文献   

7.
A. K. Sen  G. Litak  A. Syta  R. Rusinek 《Meccanica》2013,48(4):783-789
We have analyzed the variations in cutting force during milling of a fiber-reinforced composite material. In particular, we have investigated the multiscale dynamics of the cutting force measured at different spindle speeds using multifractals and wavelets. The multifractal analysis revealed the changes in complexity with varying spindle speeds. The wavelet analysis identified the coexistence of important periodicities related to the natural frequency of the system and its multiple harmonics. Their nonlinear superposition leads to the specific intermittent behavior. The workpiece used in the experiment was prepared from an epoxy-polymer matrix composite reinforced by carbon fibers.  相似文献   

8.
In this paper, a constitutive model for short fibre reinforced cementitious composites will be presented. This model is based on the St. Venant–Kirchhoff model, which is a special case of a hyperelastic material. This model is refined to include the fibre orientation distribution. Numerical FEM simulations with the developed constitutive model and fracture simulations using the discrete element method are presented. The outcomes of these numerical methods demonstrate how important it is to monitor and further to control the fibre orientation distribution during the manufacturing process. As the manufacturing process might involve casting, as, e.g., in the case of steel fibre reinforced concrete, an outlook on simulations of the manufacturing process in order to predict and to control the fibre orientation distribution is given.  相似文献   

9.
An approach is outlined to the equilibrium in fiber-reinforced materials in which the fibers are modeled as curves or lines with concentrated material properties. The system of forces representing the interaction of the fibers with the bulk matter is analyzed, and equilibrium of forces is derived from global laws. The displacements of the bulk matter are assumed to have continuous extension to the fibers. This forces the set of admissible deformations superquadratically integrable. This in turn forces the energy of the bulk of superquadratic growth. The material of the bulk matrix therefore cannot be linearly elastic. The energy of fibers can have a slower growth and can be quadratic. A formal set of assumptions is given under which an equilibrium state of minimum energy exists in the given external conditions. A weak form of equilibrium equations is derived for this equilibrium state. An explicitly calculable axisymmetric example is presented with an isotropic and quadratic energy of the matrix (linear elasticity) and linearly stretchable fiber. Since the superquadratic growth assumption is not satisfied, some peculiar features of the solution arise, such as the infinite limit of the radial displacement near the fiber. Nevertheless, from the obtained solution, we can compute the normal force in the fiber and the shear stress at the interface.  相似文献   

10.
Fracture resistance of fiber reinforced composites with polymer matrix is examined owing to impact loading and heat treatment over a wide range of temperatures. Test data are presented for the nonhomogeneous peeling behavior of layered composite specimen damaged by impact. Analytical results are also given for the peeling growth rate under the action of edge peel off and transverse shear.  相似文献   

11.
Composite materials often exhibit local fluctuations in the volume fraction of their individual constituents. This paper studies the influence of such small fluctuations on the effective properties of composites. A general asymptotic expansion of these properties in terms of powers of the amplitude of the fluctuations is given first. Then, this general result is applied to porous materials.As is well-known, the effective yield surface of ductile voided materials is accurately described by Gurson's criterion. Suitable extensions for viscoplastic solids have also been proposed. The question addressed in the present study pertains to nonuniform distributions of voids in a typical volume element or in other words to the presence of matrix-rich and pore-rich zones in the material. It is shown numerically and analytically that such deviations from a uniform distribution result in a weakening of the macroscopic carrying capacity of the material.  相似文献   

12.
Imperfect bonding between constituents is studied where displacements, electric and magnetic static potentials are considered to have a jump proportional to the normal component of the mechanical traction, electric displacement and magnetic flux. This condition may model various interface damages or the thin glue layer between two adjacent phases. They are termed as the mechanically compliant, dielectrically weakly capacitance and magnetically weakly inductance at the interface. It is shown that while the more imperfect the interface is, the overall properties become weaker, such as longitudinal shear stiffness, out-of-plane piezoelectric coupling, and magnetoelectric coupling. Out-of-plane piezomagnetic coupling, transverse dielectric permittivity and transverse dielectric permeability exhibit no influence by imperfect bonding. The imperfect interface proposed is mimicked by the springs, capacitors and inductances for the mechanical, electric and magnetic interaction between the phases and are highly sensitive to the interphase properties. The results are compared mainly with the self consistent model reported in the literature and good agreements are shown.  相似文献   

13.
14.
The bulk and shear modulus of metal matrix composites with various volume fractions of particles are modified based on the Eshelby’s equivalent inclusion method combined with self-consistent scheme. By introducing the modified modulus, a new model, which can predict the particle size effects on the stress–strain relation under interfacial debonding damage between matrix and particles, is established. The results obtained from the present investigation show a better agreement with the experimental data.  相似文献   

15.
In this paper, a numerical model developed for the analysis of a cylindrical element of matrix containing a single fiber is presented. A ring-shaped crack is assumed at interface of fiber and matrix. Both layers in the model are bonded perfectly with the exception of the crack faces. Contact elements, which have bonded feature, are used between fiber and matrix. Displacement correlation method is used to calculate opening-mode and sliding-mode stress intensity factors. These results obtained from the analysis help to understand the debonding phenomenon between fiber and matrix interface. Effects of the mechanical properties of fiber and matrix on direction of crack propagation are also discussed.  相似文献   

16.
This report shows how robust, multiaxial, constitutive models for advanced materials can be formulated by using micromechanics to address theoretical and experimental issues. An analytical micromechanical model that includes viscoplastic matrix response, as well as fiber-matrix debonding, is used to predict the multiaxial response of metal matrix composites in terms of macro flow/damage surfaces at room and elevated temperatures. Macro flow/damage surfaces (i.e. debonding envelopes, matrix threshold surfaces, macro ‘yield’ surfaces, surfaces of constant inelastic strain rate, and surfaces of constant dissipation rate) are determined for a silicon carbide/ titanium composite in three stress spaces. The flow/damage surfaces are shown to have their centers offset from the origin by residual stresses and their shape altered by debonding. The normality condition is shown to be reasonably well satisfied for macro surfaces of constant dissipation rate in the presence of fiber-matrix debonding. These results indicate which types of flow/damage surfaces should be characterized and what loadings must be applied to obtain the most meaningful experimental data for guiding theoretical model development and verification.  相似文献   

17.
A recently introduced nonlinear homogenization method [J. Mech. Phys. Solids 50 ( 2002) 737–757] is used to estimate the effective behavior and the associated strain and stress fluctuations in two-phase, power-law composites with aligned-fiber microstructures, subjected to anti-plane strain, or in-plane strain loading. Using the Hashin–Shtrikman estimates for the relevant “linear comparison composite,” results are generated for two-phase systems, including fiber-reinforced and fiber-weakened composites. These results, which are known to be exact to second-order in the heterogeneity contrast, are found to satisfy all known bounds. Explicit analytical expressions are obtained for the special case of rigid-ideally plastic composites, including results for arbitrary contrast and fiber concentration. The effective properties, as well as the phase averages and fluctuations predicted for these strongly nonlinear composites appear to be consistent with deformation mechanisms involving shear bands. More specifically, for the case where the fibers are stronger than the matrix, the predictions appear to be consistent with the shear bands tending to avoid the fibers, while the opposite would be true for the case where the fibers are weaker.  相似文献   

18.
Tungsten/copper (W/Cu) particle reinforced composites were used to investigate the scaling effects on the deformation and fracture behaviour. The effects of the volume fraction and the particle size of the reinforcement (tungsten particles) were studied. W/Cu-80/20, 70/30 and 60/40 wt.% each with tungsten particle size of 10 μm and 30 μm were tested under compression and shear loading. Cylindrical compression specimens with different volumes (DS = H) were investigated with strain rates between 0.001 s−1 and about 5750 s−1 at temperatures from 20 °C to 800 °C. Axis-symmetric hat-shaped shear specimens with different shear zone widths were examined at different strain rates as well. A clear dependence of the flow stress on the deformed volume and the particle size was found under compression and shear loading. Metallographic investigation was carried out to show a relation between the deformation of the tungsten particles and the global deformation of the specimens. The size of the deformed zone under either compression or shear loading has shown a clear size effect on the fracture of the hat-shaped specimens.The quasi-static flow curves were described with the material law from Swift. The parameters of the material law were presented as a function of the temperature and the specimen size. The mechanical behaviour of the composite materials were numerically computed for an idealized axis-symmetric hat-shaped specimen to verify the determined material law.  相似文献   

19.
The effect of fiber arrangement on transverse tensile failure in unidirectional carbon fiber reinforced composites with a strong fiber-matrix interface was studied using a unit-cell model that includes a continuum damage mechanics model. The simulated results indicated that tensile strength is lower when neighboring fibers are arrayed parallel to the loading direction than with other fiber arrangements. A shear band occurs between neighboring fibers, and the damage in the matrix propagates around the shear band when the interfacial normal stress (INS) is sufficiently high. Moreover, based on the observation of Hobbiebrunken et al., we reproduced the damage process in actual composites with a nonuniform fiber arrangement. The simulated results clarified that the region where neighboring fibers are arrayed parallel to the loading direction becomes the origin of the transverse failure in the composites. The cracking sites observed in the simulation are consistent with experimental results. Therefore, the matrix damage in the region where the fiber is arrayed parallel to the loading direction is a key factor in understanding transverse failure in unidirectional carbon fiber reinforced composites with a strong fiber/matrix interface.  相似文献   

20.
Phenolic matrix is reinforced by unidirectional E-glass fibers with volume fractions of 0.30 and 0.45. Three different surface treatments are applied to the E-glass fibers. The composite specimens are tested at ambient condition and temperatures of 100°C 150° and 200°C with stress levels of R(σminmax) equal to 0 and 0.4 for load frequencies of 1.5, 10 and 25 Hz. Data are presented in terms of S/N curves and assessed by degradation of modulus based on compliance. For a particular fiber glass surface treatment and volume fraction, the composite specimen is notched and tested at room temperature and 200°C. A fatigue strength reduction factor Kf is defined and obtained such that the results could be compared with those of the unnotched specimens. Notch effect is small if the hole diameter is equal to the specimen thickness; it would be important for larger hole sizes. Fractured surfaces are examined by the scanning electron microscope.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号