首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A great deal of attention has been paid to the use of magnetite nanoparticles as heating elements in the research of magnetic fluid hyperthermia. However, these particles have a relatively low magnetization and as a result, have low heating efficiency as well as difficulties in detection applications. To maximize heating efficiency we propose and show the use of high-moment Fe(Co)-Au core-shell nanoparticles. Using a physical vapor nanoparticle-deposition technique the high-moment nanoparticles were synthesized. The water-soluble particles were placed in an AC magnetic field of variable magnetic field frequencies. The temperature rise was measured and compared to theory.  相似文献   

2.
In this work we study the heating efficiency of Fe/MgO magnetic core/biocompatible shell nanoparticles and their in vitro application in magnetic hyperthermia on cancer cells. Different human breast cancer cell lines were used to assess the suitability of nanoparticles for in vivo application. The experiments revealed a very good cytotoxicity profile and significant uptake efficiency together with relatively high specific absorption rates and fast thermal response, features that are crucial for adequate thermal efficiency and minimum duration of treatment.  相似文献   

3.
Super paramagnetic iron oxide Fe3O4 nanoparticles prepared via photochemical reaction in pure form were used for inducing hyperthermia to treat subcutaneous Ehrlich carcinoma implanted in female mice. Our results indicate that the mean temperature profiles at the rectum, periphery of the tumor surface and at the center of the tumor during hyperthermia treatment increased gradually. The maximum temperature achieved in the tumor center was 47±1°C after 20 min with radiofrequency exposures at 25 kW. The acquired magnetic resonance images identified apoptotic cells in the center of the tumor which were exposed to magnetic resonance hyperthermia (MRH). Apoptotic cells presented as dark signal intensity in the T1-weighted images which were further confirmed by pathological examinations. Also, the results revealed that the tumor size in the all mice exposed to MRH is still as the same as before the treatment, but the rate of tumor growth was very slow by comparing with the growth rate of the control group.  相似文献   

4.
Cubic structured manganese ferrite nanoparticles were synthesized by a thermal treatment method followed by calcination at various temperatures from 723 to 873 K. In this investigation, we used polyvinyl pyrrolidon (PVP) as a capping agent to control the agglomeration of the nanoparticles. The characterization studies were conducted by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The average particle sizes of manganese ferrite nanoparticles were determined by TEM, which increased with the calcination temperature from 12 to 22 nm and they had good agreement with XRD results. Fourier transform infrared spectroscopy confirmed the presence of metal oxide bands at all temperatures and the absence of organic bands at 873 K. Magnetic properties were demonstrated by a vibrating sample magnetometer, which showed a super-paramagnetic behavior for all samples and also saturation magnetization (Ms) increases from 3.06 to 15.78 emu/g by increasing the calcination temperature. The magnetic properties were also confirmed by the use of electron paramagnetic resonance spectroscopy, which revealed the existence of unpaired electrons and also measured peak-to-peak line width, resonant magnetic field and the g-factor.  相似文献   

5.
6.
Bionized nanoferrite (BNF) particles with high specific power absorption rates were synthesized in the size range of 20–100 nm by high-pressure homogenization for targeted cancer therapy with alternating magnetic fields. Several strategies were used to conjugate antibodies to the BNF particles. These strategies were compared using an immunoassay to find optimal conditions to reach a high immunoreactivity of the final antibody–particle conjugate.  相似文献   

7.
Recently, protein-based nanoparticles as drug delivery systems have attracted great interests due to the excellent behavior of high biocompatibility and biodegradability, and low toxicity. However, the synthesis techniques are generally costly, chemical reagents introduced, and especially present difficulties in producing homogeneous monodispersed nanoparticles. Here, we introduce a novel physical method to synthesize protein nanoparticles which can be accomplished under physiological condition only through ultraviolet (UV) illumination. By accurately adjusting the intensity and illumination time of UV light, disulfide bonds in proteins can be selectively reduced and the subsequent self-assembly process can be well controlled. Importantly, the co-assembly can also be dominated when the proteins mixed with either anti-cancer drugs, siRNA, or active targeting molecules. Both in vitro and in vivo experiments indicate that our synthesized protein–drug nanoparticles (drug-loading content and encapsulation efficiency being ca. 8.2% and 70%, respectively) not only possess the capability of traditional drug delivery systems (DDS), but also have a greater drug delivery efficiency to the tumor sites and a better inhibition of tumor growth (only 35% of volume comparing to the natural growing state), indicating it being a novel drug delivery system in tumor therapy.  相似文献   

8.
Self-heating from magnetic nanoparticles under AC magnetic field can be used either for hyperthermia or to trigger the release of an anti-cancer drug, using thermo-responsive polymers. The heat generated by applying an AC magnetic field depends on the properties of magnetic nanoparticles (composition, size, crystal structure) as well as the frequency and amplitude of the magnetic field. Before these systems can be efficiently applied for in vitro or in vivo studies, a thorough analysis of the magnetically induced heating is required. In this study, CoFe2O4 nanoparticles were synthesized, dispersed in water, and investigated as heating agents for magnetic thermo-drug delivery and hyperthermia. The temperature profiles and infrared (IR) camera images of heat generation of CoFe2O4 nanoparticles under various AC magnetic fields of 127–700 Oe at 195, 231, and 266 kHz were measured using an IR thermacam, excluding the external AC magnetic field interruption. The CoFe2O4 nanoparticles were successfully dispersed in water using an 11-mercaptoundecanoic acid ligand exchange method to exchange the solvent used for synthesis of hexane for water. During the heating experiments, each of CoFe2O4 nanoparticle solutions reached a steady state where the temperature rose between 0.1 and 42.9 °C above ambient conditions when a magnetic field of 127–634 Oe was applied at 231 or 266 kHz. The heat generation was found to be dependent on the intensity of AC magnetic field and applied frequency. Therefore, the desired heating for magnetically triggered drug delivery or hyperthermia could be achieved in water-dispersed CoFe2O4 nanoparticles by adjusting the AC magnetic field and frequency.  相似文献   

9.
Nanofluids, a class of solid–liquid suspensions, have received an increasing attention and studied intensively because of their anomalously high thermal conductivites at low nanoparticle concentration. Based on the fractal character of nanoparticles in nanofluids, the probability model for nanoparticle’s sizes and the effective thermal conductivity model are derived, in which the effect of the microconvection due to the Brownian motion of nanoparticles in the fluids is taken into account. The proposed model is expressed as a function of the thermal conductivities of the base fluid and the nanoparticles, the volume fraction, fractal dimension for particles, the size of nanoparticles, and the temperature, as well as random number. This model has the characters of both analytical and numerical solutions. The Monte Carlo simulations combined with the fractal geometry theory are performed. The predictions by the present Monte Carlo simulations are shown in good accord with the existing experimental data.  相似文献   

10.
Magnetic fluid hyperthermia (MFH) is a cancer treatment that can selectively elevate the tumor temperature without significantly damaging the surrounding healthy tissue. Optimal MFH design requires a fundamental parametric investigation of the heating of soft materials by magnetic fluids. We model the problem of a spherical tumor and its surrounding healthy tissue that are heated by exciting a homogeneous dispersion of magnetic nanoparticles infused only into the tumor with an external AC magnetic field. The key dimensionless parameters influencing thermotherapy are the Péclet, Fourier, and Joule numbers. Analytical solutions for transient and steady hyperthermia provide correlations between these parameters and the portions of tumor and healthy tissue that are subjected to a threshold temperature beyond which they are damaged. Increasing the ratio of the Fourier and Joule numbers also increases the tumor temperature, but doing so can damage the healthy tissue. Higher magnetic heating is required for larger Péclet numbers due to the larger convection heat loss that occurs through blood perfusion. A comparison of the model predictions with previous experimental data for MFH applied to rabbit tumors shows good agreement. The optimal MFH conditions are identified based on two indices, the fraction IT of the tumor volume in which the local temperature is above a threshold temperature and the ratio IN of the damaged normal tissue volume to the tumor tissue volume that also lies above it. The spatial variation in the nanoparticle concentration is also considered. A Gaussian distribution provides efficacy while minimizing the possibility of generating a tumor hot spot. Varying the thermal properties of tumor and normal tissue alters ITand IN but the nature of the temperature distribution remains unchanged.  相似文献   

11.
本文用传递函数的概念导出了凹球面聚焦脉冲声扬的简洁表达式,从数值计算上和实验上研究了这种声场和中轴线上不同位置处声压信号的持续时间和频谱特征,分析了它们对热疗的影响。  相似文献   

12.
In this study, we established a multiphysics coupling model of magnetic fluid hyperthermia (MFH), using complex magnetic permeability to solve the magnetic losses of magnetic nanoparticles (MNPs). The experiments were performed to verify the validity of numerical coupling method. The optimal treatment time (OTT) was regarded as the time required for the lowest temperature point of the tumor to attain the damage criteria. The OTT increased by about 42 s as the tumor radius increased by 1 cm, and decreased by 10 s for the increase in MNP dose per gram of tumor by 1 mg. To achieve cost-effective therapies under moderate treatment conditions, the preferable ranges of external magnetic field intensity H0 and frequency f, MNP radius R and volume fraction ? are 3–11 kA/m, 200–500 kHz, 8–10 nm, and 5%–10%, respectively. It is greatly encouraged to adopt the combination of higher H0 (8–11 kA/m) and lower f (200–300 kHz), and the conjunction of higher R and ?. There was a slight thermal damage to normal tissues due to eddy current loss. In conclusion, MFH can provide an excellent therapeutic effect for deep tumors.  相似文献   

13.
Chemo-sensor technology demands to design a single, preconcentrator based sensing system having higher sensitivity, sufficient selectivity and efficient removal of metal ions with simple operating and recognition methodology. Here we effectively deliberated Ce doped SnO2 nanoparticles based sensing system which can be exploited for the recognition and extraction of Co(II) ions in a single step by strong interaction between Ce doped SnO2 nanoparticles and Co(II). The sensing ability of Ce doped SnO2 nanoparticles were deliberated for a selective removal of cobalt using inductively coupled plasma-optical emission spectrometry. The sensing ability of Ce doped SnO2 is studied for various metal ions, such as Cd(II), Co(II), Cr(III), Cu(II), Fe(III), Ni(II) and Zn(II) but the designed sensor was most selective toward Co(II) which was 5000 time more sensitive to Co(II) rather than different interfering metal ions. In addition, the desorption study for regeneration of Ce doped SnO2 nanoparticles was carried out. This novel approach provides a new route for simultaneous detection and removal of Co(II) in a single step and can be a time and cost alternative tool for environmental safety.  相似文献   

14.
《Current Applied Physics》2018,18(4):469-476
In order to obtain SrFe12O19 nanoparticles, thermal treatment method was employed, and afterwards SiO2 and TiO2 nanoparticles were embedded in SrFe12O19 matrix SrFe12O19 nanoparticles. The SiO2 and TiO2 nanoparticles' effects were set in SrFe12O19 matrix and experimental techniques which include, transmission electron microscopy (TEM), x-ray diffraction (XRD), fourier transform infrared spectroscopy (FT-IR), x-ray analysis (EDX) and field emission scanning electron microscope (FESEM) were used in studying the physical properties of the prepared nanoparticles. The precise DASF method (derivation of absorption spectrum fitting) was employed in examining the optical properties. The addition of SiO2 and TiO2 nanoparticles to SrFe12O19 matrix resulted in the reduction of energy band gap values in compare with the SrFe12O19 nanoparticles. The chemical analysis of SrFe12O19/SiO2, SrFe12O19 nanoparticles, and SrFe12O19/TiO2 nanocomposites was carried out using energy dispersion X-ray analysis (EDX). Ferromagnetic behaviors were demonstrated by SrFe12O19 nanoparticles, SrFe12O19/SiO2 and SrFe12O19/TiO2 nanocomposites, and the behaviors were validated through the use of a vibrating sample magnetometer (VSM). A wasp-waist was observed through hysteresis loop of SrFe12O19/SiO2 nanocomposites, implying the presence of the two magnetic phases; soft and hard ferromagnetic.  相似文献   

15.
In order to better understand the transition from quantum to classical behavior in spin system, electron magnetic resonance (EMR) is studied in suspensions of superparamagnetic magnetite nanoparticles with an average diameter of ∼9 nm and analyzed in comparison with the results obtained in the maghemite particles of smaller size (∼5 nm). It is shown that both types of particles demonstrate common EMR behavior, including special features such as the temperature-dependent narrow spectral component and multiple-quantum transitions. These features are common for small quantum systems and not expected in classical case. The relative intensity of these signals rapidly decreases with cooling or increase of particle size, marking gradual transition to the classical ferromagnetic resonance (FMR) behavior.  相似文献   

16.
Colloidal CdSe nanocrystals were synthesized through a solution process. The CdSe nanocrystals coated on Si(1 0 0) wafers were UV-exposed in either an air or argon atmosphere to distinguish the effect of generated ozone from UV-radiation at 365 nm on the removal of surface capping pyridine molecules. The pyridine on the CdSe nanocrystal's surface could be effectively removed by the ozone generated during UV-exposure with an accompanying highly oxidized surface state of the CdSe nanocrystals. For the removal of surface oxides of CdSe nanocrystals, a successive thermal treatment under ultra high vacuum (UHV) was adopted. The optical energy bandgap measured by using UV-vis absorption spectroscopy showed a red shift with treatment with an increase of annealing temperature. The electronic energy structure of UHV-annealed CdSe nanocrystals film was analyzed in situ using X-ray absorption and photoelectron spectroscopy. A great resemblance was found between the values of the optical and electron energy bandgaps of effectively surface-treated CdSe nanocrystals film after UHV-annealing at 400 °C.  相似文献   

17.
Highly reactive zero-valent iron (ZVI) nanoparticles stabilized with carboxymethyl cellulose (CMC) were tested for reduction of nitrate in fresh water and brine. Batch kinetic tests showed that the pseudo first-order rate constant (k obs) with the stabilized nanoparticles was five times greater than that for non-stabilized counterparts. The stabilizer not only increased the specific surface area of the nanoparticles, but also increased the reactive particle surface. The allocation between the two reduction products, NH4 + and N2, can be manipulated by varying the ZVI-to-nitrate molar ratio and/or applying a Cu–Pd bimetallic catalyst. Greater CMC-to-ZVI ratios lead to faster nitrate reduction. Application of a 0.05 M HEPES buffer increased the k obs value by 15 times compared to that without pH control. Although the presence of 6% NaCl decreased k obs by 30%, 100% nitrate was transformed within 2 h in the saline water. The technology provides a powerful alternative for treating water with concentrated nitrate such as ion exchange brine.  相似文献   

18.
Nearly monodisperse nanoparticles were synthesized by an environmentally benign low-temperature (140-180 °C) method involving pressure-induced decomposition of metal oleates in alcohol. XRD and TEM were employed in the characterization of the samples. In this study, Fe3O4, CoO, MnO, CoFe2O4, MnFe2O4, and a mixture of Ni, NiO, Ni2O3 nanoparticles, exhibiting various shapes and assemblies, were obtained.  相似文献   

19.
Pulsed laser ablation technique has attracted great attention as a method for preparing nanoparticles. In this work, calcined fish bones and synthetic hydroxyapatite, have been used as target to be ablated in de-ionized water with a pulsed CO2 laser to produce calcium phosphate nanoparticles. The obtained nanoparticles were amorphous and spherical in shape with a mean diameter of about 25 nm. The microanalyses revealed that nanoparticles obtained from the synthetic HA undergo transformation to tricalcium phosphate. While nanoparticles obtained from the biological hydroxyapatite mostly preserve the composition of precursor material.  相似文献   

20.
The synthesis of Y0.9Er0.1Al3(BO3)4 crystalline powders and vitreous thin films were studied. Precursor solutions were obtained using a modified polymeric precursor method using d-sorbitol as complexant agent. The chemical reactions were described. Y0.9Er0.1Al3(BO3)4 composition presents good thermal stability with regard to crystallization. The Y0.9Er0.1Al3(BO3)4 crystallized phase can be obtained at 1,150 °C, in agreement with other authors. Crack- and porosity-free films were obtained with very small grain size and low RMS roughness. The films thickness revealed to be linearly dependent on precursor solution viscosity, being the value of 25 mPa s useful to prepare high-quality amorphous multi-layers (up to ∼ 800 nm) at 740 °C during 2 h onto silica substrates by spin coating with a gyrset technology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号