首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
马丽  贺小龙  李明  胡书新 《物理学报》2018,67(14):148703-148703
Bid蛋白是仅有BH3结构域的Bcl-2家族蛋白,在溶酶体膜透化以及线粒体外膜透化引发的细胞凋亡过程中起着非常重要的调控作用,但是Bid蛋白与生物膜之间的相互作用导致脂膜透化的确切机制尚不十分清楚.本文利用激光扫描共聚焦显微成像技术及基于氧化石墨烯表面诱导荧光衰逝的单分子荧光技术,分别从单囊泡及单分子水平对tBid蛋白与磷脂膜之间的相互作用进行了系统的研究.结果表明,tBid蛋白在膜上聚集后可引起脂膜的透化,且脂膜透化的发生源于聚集体中一些tBid蛋白更深入地插入了脂膜中.  相似文献   

2.
单分子探测技术是一项超高灵敏度的探测技术,在生物、医学和环境等领域有着广泛的应用。在这里,本文简要介绍了基于激光诱发荧光方法的单分子探测谱仪的原理和装置,以及用CC5染料分子在该探测谱仪上进行的若干实验研究结果,包括样品流速的影响、能量特性、浓度线性、检测限等方面,并讨论了光漂白现象对实验结果的影响。  相似文献   

3.
微腔中单分子对荧光共振能量转移光谱学的理论研究   总被引:1,自引:1,他引:0  
生物大分子动态的结构变化能够使用单分子对荧光共振能量转移谱技术来研究.主要研究了微腔在单分子对共振能量转移实验中有效提高相应单分子对的荧光发射信号的作用,从而提高该技术的时间分辨率.研究发现.由于受体一微腔的强耦合相互作用,光学微腔使得受体分子变成了一个类似于单原子激光的激光体.此外,随着距离的增加.受体的光子数会很快下降.微腔使受体的发射光对单分子对间的距离有更大的依赖性,在腔体中进行单分子对共振能量转移实验町以得到更高的时间分辨率.研究结果为单分子对荧光共振能量转移技术提供了实验方法和理论指导.  相似文献   

4.
单分子的荧光特性及其在生物学上的应用   总被引:2,自引:0,他引:2  
周拥军  陈德强  夏安东  黄文浩 《物理》2000,29(11):657-661
近年来,单分子探测在许多学科领域的研究取得了显著的进展。它为科学家提供了一种新的手段来研究这些领域的前沿课题。光学和光谱技术是单分子探测最常用的方法之一。单个分子的荧光强度的涨落及其荧光的偏振特性是单分子荧光的重要特征,在单分子探测的广泛应用中,人们正是利用这种单个分子的重要特征来研究和推测生物大分子的结构和功能。文章简要介绍了单分子的荧光特点、探测方法及其在生物学中的应用。  相似文献   

5.
PAiRFP1是一种以细菌光敏色素为模板,改造得到的光激活荧光蛋白。与其他光激活荧光蛋白相比,它最大的优势是激发、发射都在近红外区域。本论文围绕该蛋白中含有的8个半胱氨酸残基,开展了定点突变、光谱学检测等工作,发现(1)在8个单突变体中,仅有Cys-29突变改善了光激活蛋白的分子亮度,其它突变都削弱了近红外荧光;(2)伴随着环境氧化、还原条件的改变,C29S突变近红外荧光显著降低,这说明该位点的半胱氨酸残基对于维持该近红外荧光蛋白在氧化还原环境中的稳定性具有重要作用,相关机理尚待深入研究。  相似文献   

6.
林丹樱  马万云 《物理》2007,36(10):783-790
文章介绍近年来新发展的几种重要的活细胞内单分子荧光成像方法,如转盘式共聚焦显微术、全内反射荧光显微术、荧光共振能量转移技术等。通过介绍它们的原理、特点和在活细胞内单分子行为研究中的应用实例,展示了这些新方法在生命科学领域广阔的应用前景。  相似文献   

7.
用稳态吸收和荧光光谱技术研究4′-(对-胺苯基)取代的三联吡啶配体(APT)分子在不同极性溶剂中的光谱和光物理性质. 在极性溶剂中APT分子存在着双荧光现象,它分别对应于局域激发态和分子内电荷转移态. APT分子的胺基N原子与醇类溶剂之间的氢键作用使该分子在质子性与非质子性溶剂中具有不同的线性关系. 此外,APT分子的三联吡啶部分与锌离子络合以及三联吡啶N4—N8—N14与甲醇分子形成氢键后,在低能区域出现新的吸收光谱带与荧光光谱带,表明在基态和激发态均形成了新的络合物. 时间分辨单光子计数技术测量的APT分子的荧光衰减过程,证明了APT分子的分子内电荷转移机制符合〝两态〞模型.  相似文献   

8.
香豆素衍生物的光谱性质研究及痕量Fe^3+的测定   总被引:1,自引:1,他引:0  
对比考查了水与乙醇溶液中不同浓度下丁二酸(7-羟基香豆素)单酯(SCE)的荧光光谱特性,基于溶剂本身的性质及SCE在氢键溶剂中的二聚作用对其光谱进行了讨论.同时基于不同pH值水溶液中荧光光谱的变化,计算得到该试剂激发态分子的酸离解常数pK*a=2.03.研究发现在pH 3.3盐酸介质中,Fe3 可使SCE的荧光猝灭,且其荧光猝灭程度与Fe3 的加入量呈线性关系.该方法线性范围为0.66~6.59 μg·L-1,方法检测限为51 ng·L-1,对比母体7-羟基香豆素对Fe3 的检测,SCE测定的灵敏度提高了104倍,从而建立了荧光猝灭法测定痕量Fe3 的新方法.  相似文献   

9.
荧光光谱成像在生物芯片蛋白量化分析中的应用研究   总被引:1,自引:0,他引:1  
采用荧光光谱成像并结合椭圆偏振技术研究了3-氨基3-乙氧基硅烷(APTES)修饰及其与戊二醛(APTES-Glu)共同修饰的两种不同表面上固定的羊抗人抗体活性和数量及其荧光免疫结合。研究结果表明:应用荧光光谱成像在APTES-Glu表面上检测到的FITC标记人血清蛋白分子的数量为APTES表面结合的2.8倍,而应用椭圆偏振技术在前者表面上检测到的FITC标记人血清蛋白分子的数量为后者表面上的2.2倍。这个结果说明:在荧光免疫检测中,荧光光谱成像完全可用于分析不同表面固定蛋白的免疫活性和半定量的检测。  相似文献   

10.
洛美沙星-Tb3+配合物与BSA相互作用的荧光光谱研究   总被引:3,自引:1,他引:2  
以洛美沙星-Tb3 作为荧光探针,利用荧光光谱研究了洛美沙星-Tb3 配合物与BSA的相互作用.实验发现:牛血清白蛋白与洛美沙星分子之间有较强的结合作用,而且洛美沙星对BSA的构象有一定的影响;同时BSA与Tb3 之间存在静电作用,可置换出配合物中的水分子,使体系的荧光强度增强.结果表明:在实验最佳条件下,牛血清白蛋白能增强洛美沙星-铽的荧光强度,据此建立了一种检测白蛋白的新方法,该法的检测限可达mg水平,线性范围为16.5~148.5μg·mL-1,检测限为68.8 ng·mL-1,RSD为1.4%.此法简便易行,而且不受共存物质的干扰.  相似文献   

11.
New Perspectives of Fluorescence Correlation Spectroscopy   总被引:1,自引:0,他引:1  
The principle of fluorescence correlation spectroscopy is outlined. The technique has been applied to a mutant of the well-known green fluorescent protein. A comparative study has been made with time-resolved fluorescence anisotropy. The latter experiment shows that the fluorophore is rigidly bound inside the protein matrix follows the rotation of the whole protein and does not show any fast restricted motion. It is evident from fluorescence correlation spectroscopy that some excited-state reaction plays a role, since the autocorrelation traces show a significant effect on the incident laser power. Other potential applications of fluorescence correlation spectroscopy are presented as taken from very recent publications.  相似文献   

12.
The misfolding and aggregation of proteins is a common phenomenon both in the cell, in in vitro protein refolding, and the corresponding biotechnological applications. Most importantly, it is involved in a wide range of diseases, including some of the most prevalent neurodegenerative disorders. However, the range of methods available to analyze this highly heterogeneous process and the resulting aggregate structures has been very limited. Here we present an approach that uses confocal single molecule detection of FRET-labeled samples employing four detection channels to obtain information about diffusivity, anisotropy, fluorescence lifetimes and Förster transfer efficiencies from a single measurement. By combining these observables, this method allows the separation of subpopulations of folded and misfolded proteins in solution with high sensitivity and a differentiation of aggregates generated under different conditions. We demonstrate the versatility of the method with experiments on rhodanese, an aggregation-prone two-domain protein.  相似文献   

13.
In this work, an ultrasensitive method for trace protein detection based on fluorescent carbon nanodots and hybridization chain reaction (HCR) is designed. Generally, the synthesized bright carbon nanodots are conjugated with two hairpin-structured DNA probes, respectively, which act as subsequent HCR fuel strands. Since single-stranded parts of DNA probes could be easily absorbed on graphene oxide (GO) nanosheets, fluorescence emission of carbon nanodots is effectively quenched via fluorescence resonance energy transfer. However, in the presence of target protein, the aptamer sequence in another hairpin-structured DNA probe specially interacts with target and the hairpin is opened. A single-stranded region is thus exposed, which initiates HCR by coupling with the DNA fuel strands on carbon nanodots. The formed HCR product displays a rigid, long double-stranded structure, which facilitates the release of carbon nanodots from GO surface. As a result, fluorescence of carbon nanodots is recovered and initial concentration of target protein can be estimated. This protein detection method shows a favorable linear response with a low limit of detection (2.3 fg mL−1). Furthermore, it is highly selective and capable of detecting target in biological fluids like serum samples, which demonstrates the promising applications of this method.  相似文献   

14.
掠出射X射线荧光分析   总被引:4,自引:0,他引:4  
巩岩  陈波  尼启良  曹建林  王兆岚 《物理》2002,31(3):167-170
掠出射X射线荧光分析技术是全反射X射线荧光分析技术的延伸和发展,文章介绍了掠出射X射线荧光分析技术的形式,特点,基本原理和作者在实验室搭建的实验装置,简述了掠出射X射线荧光分析技术的发展史,以及该技术在化学元素微量和痕量分析及薄膜特性分析等领域中的应用,展望了这种技术今后的发展前景。  相似文献   

15.
The effects of thermally annealed silver island films have been studied with regard to their potential applicability in applications of metal-enhanced fluorescence, an emerging tool in nano-biotechnology. Silver island films were thermally annealed between 75 and 250C for several hours. As a function of both time and annealing temperature, the surface plasmon band at ≈420 nm both diminished and was blue shifted. These changes in plasmon resonance have been characterized using both absorption measurements, as well as topographically using Atomic Force Microscopy. Subsequently, the net changes in plasmon absorption are interpreted as the silver island films becoming spherical and growing in height, as well as an increased spacing between the particles. Interestingly, when the annealed surfaces are coated with a fluorescein-labeled protein, significant enhancements in fluorescence are osbserved, scaling with annealing temperature and time. These observations strongly support our recent hypothesis that the extent of metal-enhanced fluorescence is due to the ability of surface plasmons to radiate coupled fluorophore fluorescence. Given that the extinction spectrum of the silvered films is comprised of both an absorption and scattering component, and that these components are proportional to the diameter cubed and to the sixth power, respectively, then larger structures are expected to have a greater scattering contribution to their extinction spectrum and, therefore, more efficiently radiate coupled fluorophore emission. Subsequently, we have been able to correlate our increases in fluorescence emission with an increased particle size, providing strong experiment evidence for our recently reported metal-enhanced fluorescence, facilitated by radiating plasmons hypothesis.  相似文献   

16.
In the past two decades, the in situ X-ray fluorescence (XRF) technology has been developed rapidly in China, which is mainly due to the rapid development of China's economy and the great demand for rapid qualitative and quantitative analysis of elements in geological exploration, environmental protection, and industrial process analysis. In this article, the development of in situ XRF analysis technology in China is reviewed from three aspects, namely in situ XRF analyzers, in situ XRF analysis technology, and applications of in situ XRF analysis technology. The in situ XRF analyzers are divided into four generations, and the technical characteristics of each generation of analyzers are discussed from the perspectives of X-ray excitation source, detector, electronic circuit unit, and digital signal processing. The progress of X-ray spectrum analysis, matrix effect correction, and correction of uneven effect and humidity effect is reviewed. The representative applications of XRF analysis technology in geological and mineral survey, environmental pollution investigation, cultural relic identification, and alloy analysis are introduced.  相似文献   

17.
介绍了一种新的宽场荧光层析显微方法.在传统宽场显微镜中引入散斑图案照明样品,控制散斑图案的动态变化,利用CCD相机记录对应的一系列荧光图像.由于焦平面内强度变化远比焦平面外强度变化剧烈,通过合适的算法能够获得焦平面的层析分辨的荧光显微图像.标定了系统参数,并研究了不同的图像重建算法对系统性能的影响,获得了不同生物组织样品的层析图像.实验表明,该显微方法能用于组织光学切片成像,在临床医学中具有实际应用价值. 关键词: 荧光 散斑照明 荧光显微 层析  相似文献   

18.
Sub‐nanometer‐sized metal clusters, having dimensions between metal atoms and nanoparticles, have attracted tremendous attention in the recent past due to their unique physical and chemical properties. As properties of such materials depend strongly on size, development of synthetic routes that allows precise tuning of the cluster cores with high monodispersity and purity is an area of intense research. Such materials are also interesting owing to their wide variety of applications. Novel sensing strategies based on these materials are emerging. Owing to their extremely small size, low toxicity, and biocompatibility, they are widely studied for biomedical applications. Primary focus of this review is to provide an account of the recent advances in their applications in areas such as environment, energy, and biology. With further experimental and theoretical advances aimed at understanding their novel properties and solving challenges in their synthesis, an almost unlimited field of applications can be foreseen.  相似文献   

19.
This report describes the development of a fluorescence microscope based on a standard inverted optical microscope which incorporates a pulsed picosecond dye laser excitation source and a detector consisting of a gated image intensifier coupled to a CCD camera. Fluorescence images have been obtained using gate durations of 0.5 ns from this apparatus, representing a reduction in gate duration of an order of magnitude compared with similar instruments reported by others recently. Subnanosecond gated fluorescence images of V79-4 Chinese hamster lung fibroblasts stained with a phthalocyanine photosensitizer used in photodynamic therapy are presented. The results of these measurements are discussed in terms of the intracellular distribution of the sensitizer. Other potential applications and limitations of this technique are also outlined.  相似文献   

20.
Different from organic fluorescence dyes, fluorescent lanthanide complexes have the fluorescence properties of long fluorescence lifetime, large Stokes shift and sharp emission profile, which makes them favorable be used as the fluorescent labeling reagents for microsecond time-resolved fluorescence bioassay. Lanthanide complex-based fluorescence labels have been successfully used for highly sensitive time-resolved fluorescence immunoassay, DNA hybridization assay, cell activity assay, and bioimaging microscopy assay. Since the technique allows easy distinction of the specific fluorescence signal of the long-lived label from short-lived background noises associated with biological samples, scattering lights (Tyndall, Rayleigh and Raman scatterings) and the optical components (cuvettes, filters and lenses), the sensitivity of fluorescence bioassay has been remarkably improved. This paper summarized the recent developments of lanthanide complex-based fluorescence labels and their applications in time-resolved fluorescence bioassays mainly based on the authors’ researches and relative publications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号