首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 46 毫秒
1.
染料敏化纳米晶薄膜太阳电池   总被引:14,自引:0,他引:14  
孟庆波  林原  戴松元 《物理》2004,33(3):177-181
文章介绍了一种新型的太阳电池——染料敏化纳米晶薄膜太阳电池的基本工作原理、目前研究的重点和进展以及应用前景和存在的问题,文章指出,这种新型的太阳电池以其制作简单并且具有进一步提高效率和降低成本的潜在优势,可以成为非晶硅太阳电池的有力竞争者。  相似文献   

2.
根据染料敏化太阳电池的工作原理和结构构成,介绍了在基础实验条件下制备染料敏化太阳电池的方法.实验表明,采用天然染料敏化的TiO2半导体薄膜作为光阳极,镀碳的导电玻璃作为反电极,并选用含碘的氧化-还原电解质,通过组装能够产生一定的电能.  相似文献   

3.
染料敏化纳米薄膜太阳电池实验研究   总被引:10,自引:0,他引:10       下载免费PDF全文
染料敏化纳米薄膜太阳电池(DSCs)的性能主要是由纳米多孔TiO22薄膜、染 料光敏化剂 、电解质、反电极(光阴极)等几个主要部分决定的.通过优化DSCs各项关键技术和材料的 性能,并通过小面积DSCs的系列实验和优化组合实验来检测各项参数对DSCs性能的影响,获 得在光照1个太阳(AM15)下,光电转换效率达到895%.这为进行产业化制备大面积DSCs 打下了良好基础. 关键词: 染料敏化 太阳电池 优化 效率  相似文献   

4.
翁坚  肖尚锋  陈双宏  戴松元 《物理学报》2007,56(6):3602-3606
通过对大面积染料敏化太阳电池的实验研究,探讨了串联电阻对大面积染料敏化太阳电池光伏特性的影响问题,给出了解决这一问题的有效方法. 在此基础上制作的大面积条状电池(0.8cm×18cm)光电转换效率达到6.89%,而由此条状电池并联组成的大面积电池(15cm×20cm)的效率接近6%. 使得大面积染料敏化太阳电池的研究工作取得突破性进展,迈出了实用化的关键一步,为其工业化生产及商业化应用提供了理论和实验依据. 关键词: 大面积 染料敏化 太阳电池 串联电阻  相似文献   

5.
染料敏化纳米ZnO薄膜太阳电池机理初探   总被引:8,自引:0,他引:8       下载免费PDF全文
讨论利用ZnO代替TiO2作为光阳极制作染料敏化薄膜太阳电池的可行性.使用LSV法,IR光谱和UV-vis光谱探讨了电池的工作机理和性能,并与染料敏化纳米TiO2薄膜太阳电池作了比较.结果发现ZnO薄膜表面与染料的吸附键合力太弱是导致ZnO太阳电池效率低下的主要原因. 关键词: 纳米ZnO 太阳电池 染料敏化 量子效率  相似文献   

6.
张苑  赵颖  蔡宁  熊绍珍 《物理学报》2008,57(9):5806-5809
以商用金红石相TiO2粉末为原料,通过在碱性溶液中150℃水热48h的方法合成TiO2纳米管.采用SEM,TEM,XRD分析手段对TiO2纳米管的形貌和结构演变进行了表征.制成的TiO2纳米管与TritonX-100,乙酰丙酮混合后,通过丝网印刷的方法涂敷到ITO导电玻璃衬底上,并且在450℃下烧结30min后得到可应用于染料敏化太阳电池的多孔光阳极.将此光阳极浸泡于N719染料敏化后,与镀铂对电极组装电池,两者之间灌 关键词: 2纳米管')" href="#">TiO2纳米管 染料敏化太阳电池 水热法  相似文献   

7.
在电子扩散微分方程的基础上,研究了染料敏化太阳电池光生电流和光生电压随光照强度不同的变化关系.提出敏化太阳电池串联阻抗功率损耗模型,理论模拟了大面积电池(有效面积>1 cm2)光电转换效率随多孔薄膜有效面积宽度变化的曲线、透明导电基底膜与银栅极的比接触电阻以及在不同入射光强下银栅极体电阻对大面积染料敏化太阳电池光伏性能的影响.结果表明透明导电基底膜的方块电阻和银栅极体电阻对大面积染料敏化太阳电池的性能有很大影响,而这种影响随光强的减弱逐渐减小. 关键词: 染料敏化 太阳电池 串联阻抗 光电转换效率  相似文献   

8.
采用强度调制光电流谱(IMPS)和强度调制光电压谱(IMVS)研究了染料敏化太阳电池(DSC)内部电子传输和背反应动力学特性.在纳米TiO2薄膜厚度相同的情况下,借助于IMPS/IMVS测量了由3种不同TiO2颗粒尺寸大小薄膜制备出DSC的电荷传输特征参数值.IMPS/IMVS理论模型拟合实验测量数据的结果表明:在不同入射光强下,随着颗粒尺寸的增大,电子扩散系数(Dn)增大,而电子寿命(τn)减小,电子传输时间(τd)也减小.Dn随颗粒尺寸增大而增加归因于薄膜表面积的减小,而τn减小可以通过缺陷之间的跃迁频率来解释,τd减小是由于TiO2薄膜内缺陷浓度减小而导致的.  相似文献   

9.
以导电聚苯胺为空穴传输材料,制备了固态染料敏化太阳电池(DSC).利用强度调制光电流谱(IMPS)和强度调制光电压谱(IMVS)研究了TiO2多孔膜内的电子输运及复合过程.通过TiO2多孔膜内电子的平均传输时间(τd)和电子寿命(τn)及对IMPS实验数据的拟合,获得电子在TiO2膜内的有效扩散系数(Dn)和扩散长度(Ln).这些聚苯胺基电池中的τn值为相应的液体型电池的1/10倍左右,表明在该固体电池中存在严重的光生电子的复合过程,这很可能主要是与氧化态染料分子和导电电子间的复合有关.随着TiO2膜厚的增加,τnτd均变小,但DnLn随之增加,只有在合适的膜厚范围内才能获得较高的光伏性能. 关键词: 聚苯胺 染料敏化太阳电池 IMPS IMVS  相似文献   

10.
陈双宏  翁坚  王利军  张昌能  黄阳  姜年权  戴松元 《物理学报》2011,60(12):128404-128404
太阳电池组件由于局部电压不匹配,其中部分电池可能较长时间工作在负偏压状态下,从而影响电池光电性能.借助拉曼光谱、电化学阻抗谱和入射单色光量子效率(IPCE)等测试手段,研究长期负偏压作用下染料敏化太阳电池光电性能的变化及其影响机理.拉曼光谱研究结果表明:电池在1000 h负偏压作用下,电解质中阳离子(Li+)会向光阳极(TiO2电极)移动并嵌入TiO2薄膜中;长期负偏压作用还会致使TiO2/电解质界面阻抗增大和IPCE下降,导致电池开路电压升高和短路电流减小.通过加入苯并咪唑(BI)添加剂,经1000 h负偏压后电池的拉曼光谱实验表明,BI能在一定程度阻碍Li+的嵌入,电池具有较好的长期稳定性.不同负偏压下的老化实验进一步表明,通过加入添加剂能够使电池在长期负偏压下保持较好的稳定性. 关键词: 染料敏化 太阳电池 组件 负偏压  相似文献   

11.
This paper studies the light scattering and adsorption of nanocrystalline TiO2 porous films used in dye-sensitized solar cells composed of anatase and/or rutile particles by using an optical four-flux radiative transfer model. These light properties are difficult to measure directly on the functioning solar cells and they can not be calculated easily from the first-principle computational or quantitative theoretical evaluations. These simulation results indicate that the light scattering of 1 25 nm TiO2 particles is negligible, but it is effective in the range of 80 and 180 nm. A suitable mixture of small particles (10 nm radius), which are resulted in a large effective surface, and of larger particles (150 nm radius), which are effective light scatterers, have the potential to enhance solar absorption significantly. The futile crystals have a larger refractive index and thus the light harvest of the mixtures of such larger rutile and relatively small anatase particles is improved in comparison with that of pure anatase films. The light absorption of the 10μm double-layered films is also examined. A maximal light absorption of double-layered film is gotten when the thickness of the first layer of 10 urn-sized anatase particles is comparable to that of the second larger rutile layer.  相似文献   

12.
周娜  张一多  孙惠成  秦达  罗艳红  李冬梅  孟庆波 《物理》2011,40(11):726-733
染料敏化太阳能电池(dye-sensitized solar cells, DSCs)作为一种新型的薄膜太阳能电池,是目前光伏电池领域的一个研究热点.文章首先介绍此类电池的基本结构、工作原理、影响电池性能的关键材料及其最新研究进展,而后重点分析了器件集成的设计模式,并对各种模式的研究进展与存在的问题进行了探讨.  相似文献   

13.
胡林华  戴松元  王孔嘉 《物理学报》2005,54(4):1914-1918
采用溶胶-凝胶方法,在不同的实验条件下获得平均粒径从15到25nm左右的纳米TiO22颗粒.利用这些颗粒制备出的纳米多孔薄膜,应用于染料敏化纳米薄膜太阳电池. 通过x射线 衍射仪分析,得到TiO22颗粒的晶相以及晶粒度大小,用透射电子显微镜观察 了纳米TiO22颗粒的形貌和尺寸.应用于太阳电池的纳米TiO22多 孔膜,经基于布朗诺尔-埃米特-泰 勒(BET)的多层吸附理论的比表面积测试和孔径分布测试,获得了多孔膜的微 关键词: 溶胶-凝胶法 2')" href="#">纳米TiO22 染料敏化 太阳电池  相似文献   

14.
吴宝山  王琳琳  汪咏梅  马廷丽 《物理学报》2012,61(7):78801-078801
以影响大面积染料敏化太阳电池性能的几个物理参量和几何参量为切入点, 分析了内部电阻对电池性能的影响, 针对几种构型不同的大面积电池, 建立了效率的半经验模型. 根据并联、串联、和各单元独立式串并联的大面积电池的相关物理参量和几何参量, 对电池效率进行了计算. 通过比较计算值与测试值的偏差, 分析了半经验模型的适用性. 在半经验模型的基础上, 分析了相关物理参量和几何参量对电池性能的影响. 结果表明, 在实际应用中, 通过半经验模型分析物理参量和几何参量的影响, 可以优化大面积电池的性能.  相似文献   

15.
As one of the most promising solutions for the green energy, thin-film photovoltaic cell technology is still immature and far from large-scale industrialization. The major issue is getting low cost and stable module efficiency. To solve these problems, a large amount of advanced solar materials have been developed to improve all parts of solar cell modules. Here, some new solar material developments applied in different critical parts of chalcogenide thin-film photovoltaic cells are reviewed. The main efforts are focused on improving light trapping and antireflection, internal quantum efficiency and collection of photo-generated carriers.  相似文献   

16.
刘学文  朱重阳  董辉  徐峰  孙立涛 《物理学报》2016,65(11):118802-118802
通过水热反应合成出二硒化铁/还原氧化石墨烯(FeSe2/rGO)复合材料, 并将其作为对电极材料应用于染料敏化太阳能电池(DSSC). 利用X射线衍射、拉曼光谱、场发射扫描电子显微镜和高分辨透射电子显微镜对FeSe2/rGO的结构和形貌进行了表征. 利用循环伏安法、电化学阻抗谱和Tafel曲线测试分析了FeSe2/rGO对电极的电催化活性. 结果表明: FeSe2呈纳米棒结构, 长度在100-200 nm之间, 且紧密地附着在rGO 的表面, FeSe2/rGO对电极对I3-的还原具有很好的催化活性. 电池的J-V曲线测试显示: 基于FeSe2/rGO对电极的DSSC的转换效率达到了8.90%, 相比基于单纯的FeSe2对电极的DSSC(7.91%)和rGO对电极的DSSC(5.24%)都有了显著提高, 甚至优于铂对电极的DSSC(8.52%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号