首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
方群 《色谱》2014,32(7):673-674
简要介绍了近期在多相微流控分析和毛细管电泳领域的一些最新研究进展,包括实现高分辨纳流液相色谱-质谱分析的微流控液滴阵列技术,采用高灵敏生物传感检测的微流控液滴单细胞膜蛋白分析技术,以及用于毛细管电泳系统的通道表面改性技术及其相关应用。  相似文献   

2.
近年来,在提取分离方面出现了许多新技术和新方法.其中毛细管电泳和微流控芯片技术以其微量、高效、快速等特点,在药物提取分离中已渐显优势.该文对基于毛细管电泳和微流控芯片的两相电泳技术、微流控液液萃取技术、微流控固液萃取技术、微流控过滤式分离技术、微流控膜分离技术在药物分离提取中的应用进行了综述.  相似文献   

3.
该文综述了微流控芯片电泳的制备、结构和应用,比较了不同材料微流控芯片电泳的制备机理、表面改性和性能特点,归纳和总结了不同结构微流控芯片电泳的进样、分离和检测系统以及不同类型微流控芯片电泳在荧光物质、金属离子、糖、药物、核酸、DNA、氨基酸、多肽和蛋白质分析中的应用,并对微流控芯片电泳的未来发展方向做了展望.  相似文献   

4.
芯片电泳作为微流控分析系统的典型代表,广泛涉及材料、微加工方法、微液流控制、分离模式和检测方法等诸多方面.与传统分析系统一样,样品制备和引入也是微全分析系统实现样品到结果首先面临的问题.电进样一直是芯片电泳系统的主流进样方法.而传统毛细管电泳系统中与电进样同样经常使用的压力进样方法则很少用于芯片电泳系统.  相似文献   

5.
毛细管电泳柱及微流控芯片通道涂层的发展   总被引:2,自引:0,他引:2  
刘春叶  陈杰瑢 《色谱》2005,23(1):63-68
综述了用于毛细管电泳柱和微流控芯片通道的涂层材料和涂层技术的发展状况,以及涂层对分离效果和分离结果重现性的影响。将涂层材料按照动态和静态分类,静态涂层又分别按照均聚物、共聚物、杂环类等进行讨论;综述了交联反应法、溶胶-凝胶法、辐照法、化学沉积法等涂层的制备方法。对毛细管电泳柱和微流控芯片通道的改良具有一定的参考价值。  相似文献   

6.
本文就毛细管电泳和微流控芯片技术在临床尿检中的应用,以及毛细管电泳和微流控芯片技术在尿样前处理、样品富集方面的进展进行了综述。主要介绍了临床尿液一般化学检查和特殊化学检查,着重对肾功能指标的生化检查进行了总结。根据目前的研究状况,对毛细管电泳和微流控芯片技术在临床检测上的应用前景和发展方向进行了展望。  相似文献   

7.
毛细管电泳微流控芯片分离-激光诱导荧光(LIF)检测DNA片段是近年来微流控分析系统中研究得较为成功的领域,该方向的研究成果极大地促进了微流控分析系统的发展.在相关的报道中,待分析样品和系统运行溶液仍然主要使用手工操作.  相似文献   

8.
董娅妮  方群 《色谱》2008,26(3):269-273
重点介绍了近年来国内外在微流控芯片毛细管电泳法用于蛋白质分离分析方面的研究进展。按照分离模式的不同,综述了各种应用于蛋白质分离的微流控芯片毛细管电泳系统,讨论了抑制芯片中的蛋白吸附的各种方法,并展望了芯片毛细管电泳系统在蛋白质分离领域的发展前景。引用文献47篇。  相似文献   

9.
Chen J  Ding G  Yue C  Tang A 《色谱》2012,30(1):3-7
纳米粒子因其具有较大的比表面积和良好的生物相容性等特点,已广泛应用于分离科学领域。纳米粒子毛细管电泳/微流控芯片技术是纳米材料技术与毛细管电泳/微流控芯片技术相结合的产物。纳米粒子可以被吸附或键合到毛细管壁作为固定相与被分析物发生相互作用;也可以作为假固定相参与样品在柱内的分配和保留,从而提高柱效,改善分离。手性是自然界的本质属性之一,开发新的快速、高效、灵敏的手性分离分析方法对于对映体的立体选择性合成、药理研究、手性纯度检测和环境检测都具有重要的意义。本文主要综述了近些年来几种不同类型纳米粒子(聚合物纳米粒子、磁性纳米粒子、金纳米粒子、碳纳米管和其他类型纳米粒子)用于毛细管电泳/微流控芯片进行手性分离的现状,并对该领域今后的发展进行了展望。  相似文献   

10.
基于自行构建的微流控芯片电泳集成非接触式电导检测分析系统,建立了一种集进样、分离与检测为一体的微流控芯片电泳电导检测蛋白质的方法,并用于人白蛋白(HSA)和人转铁蛋白(TRF)两种尿蛋白的分离分析以及肾病综合症病人尿液中白蛋白的定量检测.考察并优化了缓冲液、分离电压、进样方式、进样时间等电泳分离的影响因素,在缓冲液为p...  相似文献   

11.
The Hadamard transform (HT) technique, which permits the S/N in CE to be improved, was applied to MEKC. Multiple sample injection of fluorescent analytes according to a Hadamard code sequence was performed using an optically gated sample injection technique, in which a sample plug was produced based on photodegradation by irradiation with an intense laser beam. The capillary and reservoirs were filled with a sample solution containing buffer components and SDS as a pseudostationary phase. A preliminary study confirmed that fluorescein ion could be photobleached in the presence of SDS. The optically gated sample injection technique was then applied to multiple sample injection, based on a Hadamard matrix. The S/N in the electropherogram obtained by HT-MEKC was improved substantially compared to that obtained by a single injection method. When the technique was applied to the separation of several amino acids labeled with FITC, the S/N ratio for each amino acid was enhanced, without any evidence of degradation in separation resolution. Moreover, HT-MEKC was applied to the analysis of amino acids contained in a Japanese beverage, resulting in improved S/Ns for the amino acids.  相似文献   

12.
Hadamard transform capillary electrophoresis (HTCE) based on electrokinetic injection allows laser-induced fluorescence detection using a small laser, namely the laser-diode-pumped YAG laser, as an excitation source. A small hole is fabricated at the center of a capillary by laser ablation; this hole functions as an inlet port for a sample solution. Therefore, the sample solution can be introduced electrophoretically into the capillary through the small hole. Multiple sample injection is accomplished by introducing a buffer solution from the end of the capillary and the sample solution through the hole. Both solutions are injected using two sets of high-voltage power supplies and migrate toward the opposite end of the capillary. A fluorescent analyte, rhodamine B, is successfully detected in the case of both single and multiple injection according to the Hadamard sequence code. By transforming the data encoded by the Hadamard matrix, the decoded data showed an increase in the signal-to-noise (S/N) ratio by a factor of 9.8. In the case of the sample containing two amino acids labeled with rhodamine B isothiocyanate (RBITC), although the concentration of every component including free RBITC is lower than the concentration limit of detection obtained by single injection, a substantial improvement in the sensitivity is achieved and all components are identified by the Hadamard transform technique.  相似文献   

13.
A novel Hadamard transform-gas chromatography/mass spectrometry (HT-GC/MS) system equipped with on-line sample collection systems is described. A Hadamard-injector was successfully designed and then coupled with an on-line adsorption/desorption system for detecting volatile organic compounds (VOCs) and a supercritical fluid extraction (SFE) system, respectively, by HT-GC/MS. Six VOCs and three pesticides were used as model compounds. In the former case, an activated-charcoal trap was used to trap VOCs from the indoor air. After 10 L of indoor air had passed through the trap, the condensed components were heated and simultaneously injected into the GC column through the Hadamard-injector, based on Hadamard codes. In a second experiment, a sample of rice was spiked with three types of pesticides and the sample then extracted using a commercially available supercritical fluid extractor. After extraction, the extracted components were transferred to a holding tank and simultaneously injected into the GC column also using the Hadamard-injector. The findings show that, in both cases, the combination of on-line sample collection methods and the use of the Hadamard transform resulted in improved sensitivity and detection. Compared to the single injection used in most GC/MS systems, the signal-to-noise (S/N) ratios were substantially improved after inverse Hadamard transformation of the encoded chromatogram.  相似文献   

14.
A concentration detection limit of 100 fM was achieved for the fluorescein ion by improving the experimental setup used for Hadamard transform capillary electrophoresis. Two argon-ion lasers, a gating laser for sample injection and a probe laser for the excitation of analyte molecules, were employed for the efficient photodegradation of analyte molecules in laser-induced fluorescence detection using an optically gated sample-injection method. In addition, a dichroic mirror, located in the pathway of the probe laser was used to exclude the other lines of the argon-ion laser. Using a Hadamard matrix on the order of 2046, the concentration limit of detection for fluorescein ion was determined to be 100 fM at S/N = 3, in which the average number of molecules in a single injection volume was calculated to be 27. The influences of the output power in both the gating and probe lasers on the sensitivity are also discussed.  相似文献   

15.
Gao L  Patterson EE  Shippy SA 《The Analyst》2006,131(2):222-228
A simple automated nanoliter scale injection device which allows for reproducible 5 nL sample injections from samples with a volume of <1 microL is successfully used for conventional capillary electrophoresis (CE) and Hadamard transform (HT) CE detection. Two standard fused silica capillaries are assembled axially through the device to function as an injection and a separation capillary. Sample solution is supplied to the injection capillary using pressure controlled with a solenoid valve. Buffer solution flows gravimetrically by the junction of the injection and separation capillaries and is also gated with a solenoid valve. Plugs of sample are pushed into the space between the injection and separation capillaries for electrokinectic injection. To evaluate the performance of the injection device, several optimizations are performed including the influence of flow rates, the injected sample volume and the control of the buffer transverse flow on the overall sensitivity. The system was then applied to HT-CE-UV detection for the signal-to-noise ratio (S/N) improvement of the nitric oxide (NO) metabolites, nitrite and nitrate. In addition, signal averaging was performed to explore the possibility of greater sensitivity enhancements compared to single injections.  相似文献   

16.
Guchardi R  Schwarz MA 《Electrophoresis》2005,26(16):3151-3159
Sensitivity is a crucial point in the development applications for medicine or environmental samples in which the analytes are present in the nanomolar range. Besides further technical development of detection systems, the multiplex sample injection technique can be applied for enhancing the signal-to-noise ratio. Hadamard transform is easily applied to microchip electrophoresis due to the fact that sample injection is generally achieved through cross, double-tee, or tee injector structures. This paper reports the first demonstration of a modified Hadamard transform electrophoresis on a microchip by using an amperometric detector. Contrary to the previous Hadamard applications, the resolution (number of points per unit of time) of electropherograms obtained is independent of the number of injections.  相似文献   

17.
The importance of Hadamard encoding pulses in one‐dimensional pure shift yielded by the chirp excitation version of selective total correlation spectroscopy (1D PSYCHE–TOCSY) experiments is discussed for chemical‐shift analysis of complex natural products at ultrahigh resolution. Herein, we adapted Hn Hadamard matrices to 1D PSYCHE–TOCSY and observed an overall circa square root of n‐fold enhancement in the signal‐to‐noise (S/N) ratio when compared to conventional 1D PSYCHE–TOCSY recorded by refocusing only one spin at a time. This enhancement in S/N facilitates the observation of very weak long‐range chemical‐shift correlations from Hadamard‐encoded PSYCHE–TOCSY (HE–PSYCHE–TOCSY). The proposed method will have a significant impact on structure determination of complex isolated/ synthetic natural products.  相似文献   

18.
Here, we report the first utilization of Hadamard transform CE (HTCE), a high-sensitivity, multiplexed CE technique, with photolytic optical gating sample injection of caged fluorescent labels for the detection of biologically important amines. Previous implementations of HTCE have relied upon photobleaching optical gating sample injection of fluorescent dyes. Photolysis of caged fluorescent labels reduces the fluorescence background, providing marked enhancements in sensitivity compared to photobleaching. Application of fast Hadamard transform CE (fHTCE) for fluorescein-based dyes yields a ten-fold higher sensitivity for photolytic injections compared to photobleaching injections, due primarily to the reduced fluorescent background provided by caged fluorescent dyes. Detection limits as low as 5 pM (ca. 18 molecules per injection event) were obtained with on-column LIF detection using fHTCE in less than 25 s, with the capacity for continuous, online separations. Detection limits for glutamate and aspartate below 150 pM (1-2 amol/injection event) were obtained using photolytic sample injection, with separation efficiencies exceeding 1 x 10(6) plates/m and total multiplexed separation times as low as 8 s. These results strongly support the feasibility of this approach for high-sensitivity dynamic chemical monitoring applications.  相似文献   

19.
Tilotta DC 《Talanta》1990,37(1):61-69
The effect of a uniformly imperfect (non-ideal) encoding mask on the signal-to-noise ratio improvement in a Hadamard transform spectrometer utilizing photon detection is theoretically studied. General equations are developed for the calculation of the multiplex gain (the Fellgett advantage) under conditions of limitation by shot noise and source-fluctuation noise. It is shown that for both cases, the multiplex gain depends on the transmission properties of the encoding mask, the UV/VIS spectrum impinging upon the mask, and the multiplex size, N. It is demonstrated that a uniformly imperfect encoding mask allows sufficient multiplex gain, and that photon-detection in Hadamard transform spectrometry can have advantages in some spectroscopic applications. In addition, comparisons are made between the multiplex gain advantages present in UV/VIS FTS and those present in UV/VIS HTS.  相似文献   

20.
A Hadamard transform-gas chromatography/mass spectrometry (HT-GC/MS) technique was employed for the online detection of ethanol or toluene in exhaled breath after drinking or smoking, respectively. Exhaled breath samples, collected from volunteers, were directly injected into the GC inlet by a Hadamard-injector without any pretreatment. In the case of breath from a drinker, using a conventional single injection, a small ion peak (corresponding to ∼0.1 ng of ethanol), the intensity of which was approximately equal to or less than the limit of detection. When the HT technique was applied, the signal-to-noise (S/N) ratio was dramatically improved. Furthermore, in the case of breath from a smoker, using conventional injection, a weak ion peak (corresponding to ∼0.7 pg of toluene) was marginally detected. However, the HT technique led to an improvement in the S/N ratio, with the peak corresponding to the limit of detection. In both cases, the HT technique permitted specific components in exhaled breath to be determined, without the need for any extraction procedures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号