首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
唐晓庆  于军胜  李璐  王军  蒋亚东 《物理学报》2008,57(10):6620-6626
通过对一种新型贵金属铱的配合物磷光材料(pbi)2Ir(acac)与咔唑共聚物进行物理掺杂, 制备了结构为indium-tin oxide(ITO)/poly(N-vinylcarbazole)(PVK): (pbi)2Ir(acac)(x)/2,9-dimethyl-4,7-diphenyl-1,10-phenan throline(BCP)(20nm)/8-Hydroxyquinoline aluminum(Alq3)(10nm)/Mg:Ag的聚合物电致磷光器件,研究了磷光聚合物掺杂体系在低掺杂浓度时(0.1%和0.5%(质量百分数,全文同))的光致发光(PL)和电致发光(EL)特性. 结果表明, 该掺杂体系的PL光谱和EL光谱中均同时存在主体材料PVK与磷光客体(pbi)2Ir(acac)的发光光谱, 但主客体的发射强度不同,推测该掺杂体系在电致发光条件下, 同时存在主体材料到客体的不完全的能量传递和载流子直接俘获过程. 磷光掺杂浓度为0.1%的器件在19V电压下实现了白光发射, 色坐标为(0.32, 0.38), 掺杂浓度为0.5%的器件在20.6V电压下的最大发光亮度为11827 cd·m-2, 而在13.4V电压下的最大流明效率为4.13 cd·A-1. 关键词: 有机电致发光器件 铱配合物磷光 聚合物掺杂  相似文献   

2.
High performance polymer light-emitting diodes (PLEDs) based on a phosphor of noble metal complex bis(1,2-dipheny1-1H-benzoimidazole) iridium (acetylacetonate) [(pbi)2Ir(acac)] doped in poly(N-vinylcarbazole) (PVK) host with various concentration were demonstrated. The photoluminescence (PL) and electroluminescence (EL) spectra of the PLEDs exhibited an emission intensity decrease of PVK and a gradually enhanced feature of (pbi)2Ir(acac) with increased doping concentration. The device with a 5 wt% (pbi)2Ir(acac) doped PVK system showed a high power efficiency of 3.84 lm/W and a luminance of 26,006 cd/m2. The results indicated that both energy transfer and charge trapping have a significant influence on the performance of PLEDs. The devices have a broadened EL spectrum of full-width at half-maximum (FWHM) more than 100 nm, which can be realized for WOLEDs.  相似文献   

3.
以2-苯基吡啶为主配体,3-乙酰基樟脑为辅助配体合成了一种新型的具有大空间位阻的环金属铱配合物Ir[(PPy)2(acam)],对它的化学结构和光物理性质进行了表征.以环金属铱配合物Ir[(PPy)2(acac)]的发光效率(0.34)为参照物,配合物在2-甲基四氢呋喃溶液中的光致发光效率为0.54,表明在配合物中引入...  相似文献   

4.
Silver‐nanoicosahedron particles (AgNIPs) are produced by chemical reduction and photochemical methods and doped into the hole transport layer (HTL) or emissive layer (EML) of blue‐emitting polymer light‐emitting diodes (PLEDs) to improve their luminous efficiency. The optimal distributed‐densities of the AgNIPs are determined from current density–voltage–luminance measurements at different doping concentrations. The AgNIP dopant doses that maximize the average luminous efficiency of the proposed PLED are 6.71 µg cm?2 in EML (achieving 3.48 cd A?1) and 6.88 µg cm?2 in HTL (achieving 3.35 cd A?1). Although the luminous efficiencies of the blue‐emitting PLEDs fabricated by both doping methods are not significantly different, the maximum plasmonic enhancement (around 30‐fold) of the blue‐emitting PLED with AgNIPs in EML is red‐shifted to the green region (≈530 nm in the electroluminescence spectrum), seriously degrading the luminescent monochromaticity of the blue‐emitting PLED. The maximum plasmonic enhancement (around 33‐fold) of blue‐emitting PLED with AgNIPs in HTL occurred at 430 nm, overlapping the localized surface‐plasmon resonance extinctions of the AgNIPs in HTL (425 nm), thus favoring the enhancement of fluorescence emission. Therefore, to enhance the large‐area emission of blue‐emitting PLEDs, the AgNIPs should be doped in the HTL rather than the EML.  相似文献   

5.
A series of novel six iridium complexes (1–6) bearing two substituted phenylimidazole and an additional acetylacetone as the third co-auxilary ligand are reported. The lowest absorption band for all iridium complexes consist of a mixture of heavy atom Ir(III) enhanced 3MLCT and 3 π-π* transitions and the phosphorescent peak wavelength can be fine-tuned to cover the spectral range 455–518 nm with high quantum efficiencies. The peak wavelength of the dopants can be finely tuned depending upon the electronic properties of the substituents. On the basis of onset potentials of the oxidation and reduction, the HOMO-LUMO energies were calculated and the reported iridium complexes emit green light with exceeding higher efficiency.  相似文献   

6.
White polymer light-emitting diodes (WPLEDs) were fabricated with blue phosphorescent iridium bis(2-(4,6-difluorophenyl)-pyridinato-N,C2′) picolinate (FIrpic) and red fluorescent silole and carbazole copolymer PCz-MPTST within a poly(N-vinylcarbazole) (PVK): 1,3-bis[(4-tert-butylphenyl)-1,3,4- oxadiazolyl] phenylene (OXD-7) host matrix. Efficient white emission consisting two emission peaks was achieved with luminous efficiency of 9.2 cd/A and CIE coordinates of (0.37, 0.40). By means of transient photoluminescence response, energy transfer among the blending components was investigated and discussed.  相似文献   

7.
雷疏影  钟建  周殿力  朱方云  邓朝旭 《中国物理 B》2017,26(11):117001-117001
Organic optoelectronic integrated devices(OIDs) with ultraviolet(UV) photodetectivity and different color emitting were constructed by using a thermally activated delayed fluorescence(TADF) material 4, 5-bis(carbazol-9-yl)-1, 2-dicyanobenzene(2 CzPN) as host. The OIDs doping with typical red phosphorescent dye [tris(1-phenylisoquinoline)iridium(Ⅲ), Ir(piq)_3], orange phosphorescent dye {bis[2-(4-tertbutylphenyl)benzothiazolato-N,C~(2')]iridium(acetylacetonate),(tbt)_2 Ir(acac)}, and blue phosphorescent dye [bis(2, 4-di-fluorophenylpyridinato)-tetrakis(1-pyrazolyl)borate iridium(Ⅲ), FIr6] were investigated and compared. The(tbt)_2 Ir(acac)-doped orange device showed better performance than those of red and blue devices, which was ascribed to more effective energy transfer. Meanwhile, at a low dopant concentration of 3 wt.%, the(tbt)_2 Ir(acac)-doped OIDs showed the maximum luminance, current efficiency, power efficiency of 70786 cd/m~2, 39.55 cd/A, and 23.92 lm/W, respectively, and a decent detectivity of 1.07 × 10~(11) Jones at a bias of -2 V under the UV-350 nm illumination. This work may arouse widespread interest in constructing high efficiency and luminance OIDs based on doping phosphorescent dye.  相似文献   

8.
在空穴传输层TCTA与电子传输层TPBi之间引入磷光染料Ir(ppy)3超薄发光层,制备了结构为ITO/MoO_3(2 nm)/NPB(40 nm)/TCTA(10 nm)/Ir(ppy)3(xnm)/TPBi(40 nm)/LiF(1 nm)/Al(80 nm)的非掺杂磷光有机电致发光器件。通过调控非掺杂发光层的厚度,详细研究了Ir(ppy)3层厚度对器件性能的影响。实验结果表明,当非掺杂发光层厚度为0.2 nm时,器件的性能最好,器件的亮度、效率和外量子效率分别达到26 350 cd·m~(-2)、42.9 cd·A~(-1)和12.9%。研究结果表明,采用超薄的非掺杂发光层可以简化器件结构和制备工艺,获得高效率的OLED器件。  相似文献   

9.
赵宝锋  唐怀军  余磊  王保争  文尚胜 《物理学报》2011,60(8):88502-088502
研究了掺杂离子型铱配合物的单发光层聚合物白光器件.根据二元互补色获得白光的原理,所采用离子型橙光材料为六氟磷酸合[二(2-(萘基-1-基)吡啶)(1-乙基-2-(9-(2-乙基己基)-9H-咔唑-3-基)-1H-咪唑并[4,5-f][1,10]菲啰啉)铱(Ⅲ)]([(npy)2Ir(c-phen)]PF6),天蓝光材料为二(2-(4,6-二氟苯基)吡啶-N,C(2))吡啶甲酰合铱(Firpic).器件结构为氧化铟锡/苯磺酸掺杂聚乙烯基二氧噻吩(40 nm)/发光 关键词: 聚合物发光二极管 白光 二元互补色 离子型铱配合物  相似文献   

10.
A novel phosphorescent organic white-light-emitting device (WOLED) with contiguration of ITO/NPB/CBP: TBPe:rubrene/Zn(BTZ)2:Ir(piq)2(acac)/Zn(BTZ)2/Mg:Ag is fabricated successfully, where the phosphorescent dye bis (1-(phenyl)isoquinoline) iridium (Ⅲ) acetylanetonate (Ir(piq)2 (acac)) doped into bis-(2-(2-hydroxyphenyl) benzothiazole)zinc (Zn(BTZ)2) (greenish-blue emitting material with electron transport character) as the red emitting layer, and fluorescent dye 2,5,8,11-tetra-tertbutylperylene (TBPe) and 5,6,11,12-tetraphenyl-naphthacene (rubrene) together doped into 4,4'-N,N'-dicarbazole-biphenyl (CBP) (ambipolar conductivity material) as the blue-orange emitting layer, respectively. The two emitting layers are sandwiched between the hole-transport layer N ,N'-biphenyl-N , N'-bis (1-naph thyl)-(1,1'-biphenyl)-4, 4 Cdiamine (NP B) and electron-transport layer (Zn(BTZ)2 ) The optimum device turns on at the driving voltage of 4.5 V. A maximum external quantum efficiency of 1.53%. and brightness 15000 cd/m^2 are presented. The best point of the Commission Internationale de 1'Eclairage (CIE) coordinates locates at (0.335, 0.338) at about 13 V. Moreover, we also discuss how to achieve the bright pure white light through optimizing the doping concentration of each dye from the viewpoint of energy transfer process.  相似文献   

11.
The fabrication of the green polymer light-emitting diodes based on emission from the phosphorescent molecule fac tris(2-phenylpyridine) iridium doped into a polymeric binary-host is reported. The main host used in the PLEDs was a non-conjugated polymer, poly(9-vinyl carbazole) (PVK). To realize the balanced transport of the holes and the electrons, a conjugated polymer, poly(9,9-dioctylfluorene) (PFO) was used as the assisting host. According to the experimental results, we found that the PLEDs can achieve the balance in charge transport and the recombination zone is still confined in the emissive layer by controlling the ratio of PVK to PFO. The luminous efficiency is enhanced by >40% while the external quantum efficiency can be increased by >38% in a polymeric binary-host system as compared to those of traditional device configuration, which is attributed to the balanced transport of the charged carrier.  相似文献   

12.
设计开发了系列新型咪唑并吡啶类铱(Ⅲ)配合物(BIPy)2Ir(acac)、(PIPy)2Ir(acac)、 (4'-MPIPy)2-Ir(acac)。在化合物Ⅲ中,当R=Ph时得到(BIPy)2Ir(acac)材料,其中BIPy和acac分别表示2-(4-联苯基)咪唑并吡啶和乙酰丙酮。将(BIPy)2Ir(acac)掺杂在N,N'-二咔唑-(1,1'-联苯)-4,4'-二胺(CBP)中制备了高效OLEDs器件,器件的最大电流效率为26.7 cd/A,最大亮度为18 000 cd/cm2,色坐标为(0.32,0.60),是首次报道的新型苯基咪唑并吡啶类铱(Ⅲ)配合物绿色磷光材料。  相似文献   

13.
制备了一种结构为ITO/NPB/NPB:Ir(piq)2(acac)/CBP:TBPe/BAlq:rubrene/BAlq/Alq3/Mg:Ag的白色磷光有机电致发光器件.其中空穴传输型主体NPB掺杂磷光染料Ir(piq)2(acac)作为红色发光层,双载流子传输型主体4,4′-N,N′-dicarbazole-biphenyl (CBP)掺杂TBPe作为蓝色发光层,电子传输型主体材料BAlq掺杂rubrene作为绿色发光层.以上发光层夹于 关键词: 电致发光 磷光染料 异质结 白光  相似文献   

14.
Optoelectronic properties of the oxadiazole-functionalized iridium complex-doped polymer light-emitting devices (PLEDs) are demonstrated with two different polymeric host matrices at the dopant concentrations 1-8%. The devices using a blend of poly(9,9-dioctylttuorene)(PFO) and 2-(4-biphenyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole (PBD) as a host matrix exhibited a maximum luminance efficiency of 11.3 cd/A at 17. 6 mA/cm^2. In contrast, the devices using a blend of poly(N-vinylcarbazole) (PVK) and PBD as a host matrix reveal only a peak luminance efficiency of 6.Scd/A at 4.1 mA/cm^2. The significantly enhanced electrophosphorescent emissions are observed in the devices with the PFO-PBD blend as a host matrix. This indicates that choice of polymers in the host matrices is crucial to achieve highly efficient phosphorescent dye-doped PLEDs.  相似文献   

15.
牛巧利  章勇  范广涵 《物理学报》2009,58(12):8630-8634
因电致发光效率高和器件制备工艺简单,聚合物为主体的绿色磷光电致发光成为一个研究热点.共轭聚合物的三线态能级一般低于绿色磷光材料的三线态能级,易对磷光的发光引起猝灭导致低的发光效率,所以较少被用作绿色磷光材料的主体.通过增加聚乙烯基咔唑(PVK)作为空穴传输层,获得了高发光效率的共轭聚合物聚芴(PFO)作主体绿色磷光发射,甚至高于相同条件下以PVK为主体的绿色磷光发射.究其原因,PVK的电子阻挡作用使发光中心靠近PVK与PFO的界面,界面处PVK因为其高的三线态能级增强了绿色磷光的发光.当三-(2-苯基吡啶)-Ir(Ir(ppy)3)掺杂浓度为2%时得到了最高的亮度效率24.8 cd/A,此时的电流密度为4.65 mA/cm2,功率效率为11 lm/W,最高亮度达到35054 cd/m2,色坐标是(0.39,0.56). 关键词: 共轭聚合物 磷光 绿光发光  相似文献   

16.
Small molecular organic light-emitting diodes (MOLED) and polymer organic light-emitting diodes (POLED) were fabricated with yellow light emission phosphorescent dye bis[2-(4-tert-butylphenyl)benzothiazolato-N,C2′] iridium (III) (acetylacetonate) doped in different hosts. The electroluminescent (EL) spectra of both devices shown two peaks generated from iridium dye but the position of main peak changed and became broader for POLED. The maximum luminance of 10,500 cd/m2 achieved at 12.5 V for MOLED is higher than maximum luminance of 9996 cd/m2 at 20 V for POLED. The maximum power efficiency of small molecular device is 6.4 lm/W, which is higher than 2.3 lm/W of polymer device, but the efficiency of both devices will roll off at large current density.  相似文献   

17.
The electroluminescence (EL) characteristics of phosphorescent organic light-emitting diodes (OLEDs) with an undoped bis(1,2-dipheny1-1H-benzoimidazole) iridium (acetylacetonate) [(pbi)2Ir(acac)] emissive layer (EML) of various film thicknesses were studied. The results showed that the intensity of green light emission decreased rapidly with the increasing thickness of (pbi)2Ir(acac), which was relevant to the triplet excimer emission. It suggested that the concentration quenching of monomer emission in the undoped (pbi)2Ir(acac) film was mainly due to the formation of triplet excimer and partly due to the triplet-triplet annihilation (TTA) and triplet-polaron annihilation (TPA). A green OLED with a maximum luminance of 26,531 cd/m2, a current efficiency of 36.2 cd/A, and a power efficiency of 32.4 lm/W was obtained, when the triplet excimer emission was eliminated. Moreover, the white OLED with low efficiency roll-off was realized due to the broadened recombination zone and reduced quenching effects in the EML when no electron blocking layer was employed.  相似文献   

18.
Phosphorescent materials are crucial to improve the luminescence and efficiency of organic light emitting diodes (OLED), because its internal quantum efficiency can reach 100%. So the studying of optical and electrical properties of phosphorescent materials is propitious for the further development of phosphorescent OLED. Phosphorescent materials were generally doped into different host materials as emitting components, not only played an important role in emitting light but also had a profound influence on carrier transport properties. We studied the optical and electrical properties of the blue 4,4′-bis(2,2-diphenylvinyl)-1,1′-biphenyl (DPVBi)-based devices, adding a common yellow phosphorescent material bis[2-(4-tert-butylphenyl)benzothiazolato-N,C2′] iridium(acetylacetonate) [(t-bt)2Ir(acac)] in different positions. The results showed (t-bt)2Ir(acac) has remarkable hole-trapping ability. Especially the ultrathin structure device, compared to the device without (t-bt)2Ir(acac), had increased the luminance by about 60%, and the efficiency by about 97%. Then introduced thin 4,4′-bis(carbazol-9-yl)biphenyl (CBP) host layer between DPVBi and (t-bt)2Ir(acac), and got devices with stable white color.  相似文献   

19.
Using cationic iridium complexes as dopants and a small molecule, 9,9-bis[4-(3,6-di-tert-butylcarbazol-9-yl)phenyl]fluorene, as the host, efficient organic light-emitting diodes (OLEDs) have been fabricated from a solution process. The blue-green OLEDs achieve a peak current efficiency of 19.8 cd?A?1 and a maximum brightness of 17700 cd?m?2. White OLEDs have been fabricated with a peak current efficiency of 16.8 cd?A?1 and Commission Internationale de l’Éclairage coordinates around (0.37, 0.44). It is suggested that cationic iridium complexes, in addition to their use in light-emitting electrochemical cells, are promising phosphorescent dopants for solution-processed small-molecule OLEDs.  相似文献   

20.
利用稳态荧光光谱和时间分辨超快光谱研究了DCM掺杂PVK(聚乙烯咔唑)体系的发光特性和能量转移。根据DCM的吸收光谱与PVK的荧光光谱,用Frster理论估算出DCM:PVK掺杂体系能量转移的临界半径及其效率。在DCM:PVK掺杂薄膜中,随着掺杂浓度的升高,DCM的发射强度增强,PVK的发射强度减弱,两者相对强度之比与估算结果一致。还利用时间分辨超快光谱研究了DCM:PVK掺杂薄膜体系的能量转移动力学过程,观察到DCM:PVK掺杂薄膜的荧光寿命随着掺杂浓度的升高逐渐变短。结果表明,在DCM:PVK掺杂薄膜中,存在从PVK到DCM较为有效的Frster能量转移。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号