首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The potential of heteronuclear MAS NMR spectroscopy for the characterization of 15N chemical shift (CS) tensors in multiply labeled systems has been illustrated, in one of the first studies of this type, by a measurement of the chemical shift tensor magnitude and orientation in the molecular frame for the two 15N sites of uracil. Employing polycrystalline samples of 15N2 and 2-13C,15N2-labeled uracil, we have measured, via 15N–13C REDOR and 15N–1H dipolar-shift experiments, the polar and azimuthal angles (θ, ψ) of orientation of the 15N–13C and 15N–1H dipolar vectors in the 15N CS tensor frame. The (θNC, ψNC) angles are determined to be (92 ± 10°, 100 ± 5°) and (132 ± 3°, 88 ± 10°) for the N1 and N3 sites, respectively. Similarly, (θNH, ψNH) are found to be (15 ± 5°, −80 ± 10°) and (15 ± 5°, 90 ± 10°) for the N1 and N3 sites, respectively. These results obtained based only on MAS NMR measurements have been compared with the data reported in the literature.  相似文献   

2.
We describe an approach to efficiently determine the backbone conformation of solid proteins that utilizes selective and extensive 13C labeling in conjunction with two-dimensional magic-angle-spinning NMR. The selective 13C labeling approach aims to reduce line broadening and other multispin complications encountered in solid-state NMR of uniformly labeled proteins while still enhancing the sensitivity of NMR spectra. It is achieved by using specifically labeled glucose or glycerol as the sole carbon source in the protein expression medium. For amino acids synthesized in the linear part of the biosynthetic pathways, [1-13C]glucose preferentially labels the ends of the side chains, while [2-13C]glycerol labels the Cα of these residues. Amino acids produced from the citric-acid cycle are labeled in a more complex manner. Information on the secondary structure of such a labeled protein was obtained by measuring multiple backbone torsion angles φ simultaneously, using an isotropic–anisotropic 2D correlation technique, the HNCH experiment. Initial experiments for resonance assignment of a selectively 13C labeled protein were performed using 15N–13C 2D correlation spectroscopy. From the time dependence of the 15N–13C dipolar coherence transfer, both intraresidue and interresidue connectivities can be observed, thus yielding partial sequential assignment. We demonstrate the selective 13C labeling and these 2D NMR experiments on a 8.5-kDa model protein, ubiquitin. This isotope-edited NMR approach is expected to facilitate the structure determination of proteins in the solid state.  相似文献   

3.
1H and 13C NMR chemical shift assignments were obtained for the local anesthetics etidocaine (1) and etidocaine hydrochloride (2) in CDCl3 solution, as well as for 2 in D2O solution. The COSY experiment was employed for proton-proton correlation, while onebond and long-range 2D heteronuclear techniques allowed the assignments of all 13C chemical shifts in each molecule. Etidocaine has a chiral carbon; etidocaine hydrochloride has, in addition to the natural chiral center, an acid-induced chirality at the protonated amine nitrogen, resulting in solvent-dependent diastereomers. Ten of the fourteen magnetically nonequivalent 13C nuclei of 2 exhibit doubled 13C resonance peaks (50.3 MHz, 20°C, CDCl3 solution) due to the presence of the two diastereomers.  相似文献   

4.
Based on the measurement of cross-correlation rates between 15N CSA and 15N–1H dipole–dipole relaxation we propose a procedure for separating exchange contributions to transverse relaxation rates (R2 = 1/T2) from effects caused by anisotropic rotational diffusion of the protein molecule. This approach determines the influence of anisotropy and chemical exchange processes independently and therefore circumvents difficulties associated with the currently standard use of T1/T2 ratios to determine the rotational diffusion tensor. We find from computer simulations that, in the presence of even small amounts of internal flexibility, fitting T1/T2 ratios tends to underestimate the anisotropy of overall tumbling. An additional problem exists when the N–H bond vector directions are not distributed homogeneously over the surface of a unit sphere, such as in helix bundles or β-sheets. Such a case was found in segment 4 of the gelation factor (ABP 120), an F-actin cross-linking protein, in which the diffusion tensor cannot be calculated from T1/T2 ratios. The 15N CSA tensor of the residues for this β-sheet protein was found to vary even within secondary structure elements. The use of a common value for the whole protein molecule therefore might be an oversimplification. Using our approach it is immediately apparent that no exchange broadening exists for segment 4 although strongly reduced T2 relaxation times for several residues could be mistaken as indications for exchange processes.  相似文献   

5.
Total assignment of 13C and 1H NMR spectra of the 5-isopropylsulfonyl-2-norbornenes 2 was achieved using the concerted application of two-dimensional homonuclear and heteronuclear chemical shift correlations. The stereochemistry of both the diastereoisomers endo 2a and exo 2b have been established using the magnitude of the proton coupling constants.  相似文献   

6.
提出了计算苯甲醛亚胺、N-苯基亚胺、N-甲基亚胺、N-异丙基亚胺中亚胺基氮原子15N NMR化学位移的经验公式:δcal0n+Δα+Δβ+Δγ+c. 按亚胺基氮原子和碳原子上两类取代基的不同分别结合最小二乘法通过线性回归各得到5种取代基参数,计算结果分别以其化学位移数据为样本点作回归检验,置信度为99.5%,最大误差Δδ≤3.1,大约有95%的15N NMR化学位移计算值的计算误差小于3.0(相对误差小于0.3%). 初步分析了芳香族亚胺苯环上对位取代基对亚胺基氮原子化学位移的影响.  相似文献   

7.
Protonation and deprotonation of the title compounds, was studied by means of 15N NMR. The shieldings of the ring nitrogen atoms are found to be very sensitive to changes in the amount of protonation. In contrast the 15N shieldings of the cyano and amino groups are found to be relatively insensitive to protonation effects and are unsuitable for estimating the degree of protonation occurring.  相似文献   

8.
Fifty-three samples of multi-substituted benzylideneanilines XArCH=NArYs (abbreviated XBAYs) were synthesized and their NMR spectra were determined. An extensional study of substituent effects on the 1H NMR chemical shifts (δH(CH=N)) and 13C NMR chemical shifts (δC(CH=N)) of the CH=N bridging group from di-substituted to multi-substituted XBAYs was made based on a total of 182 samples of XBAYs, together with the NMR data of other 129 samples of di-substituted XBAYs quoted from literatures. The results show that the substituent specific cross-interaction effect parameter (Δ(Σσ)2)plays an important role in quantifying the δC(CH=N) values of XBAYs, but it is negligible for quantifying the δH(CH=N) values; the other substituent parameters also present different influences on the δC(CH=N) and δH(CH=N). On the whole, the contributions of X and Y to the δC(CH=N) of XBAYs are balanced, but the δH(CH=N) values of XBAYs mainly rely on the contributions of X.  相似文献   

9.
The prediction of the 13C NMR signals for derivatives of naphthalene has been investigated using statistical Substituent Chemical Shift (SSCS) values. For α-derivatives the model had a correlation coefficient of observed versus predicted line positions of r=.98 with an standard deviation of 2.1ppm while in the β case r=.98 with the standard deviation being 2.0ppm. Prediction of the 9 and 10 positions had an r=.93 with the standard deviation being 1.5ppm. The data base consisted of 5250 signals from 525 naphthalene derivatives.  相似文献   

10.
27Al and 29Si Magic-Angle Spinning NMR results are reported for conventionally prepared glass of cordierite stoichiometry (2MgO · 2Al2O3 · 5SiO2), the metastable high-quartz solid solution (μ-cordierite) and the high-temperature polymorph of cordierite (α-cordierite). Both, 27Al two-dimensional (2D) quadrupole nutation experiments and 27Al satellite transition spectroscopy (SATRAS) have been applied to identify two different tetrahedrally-coordinated aluminium sites (AlO4). SATRAS has been used to extract the quadrupole interaction parameters and their distribution, the isotropic chemical shifts and the relative populations of the different Al sites. Both, the 27Al and 29Si NMR results, lead to the conclusion that a perfect Si/Al disorder does not exist in these investigated cordierite samples.  相似文献   

11.
During the investigation of the glycosidic constitutents of Calendula arvensis L. we isolated the previously reported Arvensoside A, Arvensoside B, Calenduloside C and Calenduloside D. The complete assignment 1H NMR spectra of these compounds was achieved through the concerted application of 2D-homonuclear chemical shift correlations. Calenduloside C and Calenduloside D were isolated for the first time from the fresh aerial parts of Calendula arvensis L.  相似文献   

12.
The supramolecular 1 : 1 host–guest inclusion compound, p-tert-butylcalix[4]arene ·α,α,α-trifluorotoluene, 1, is characterized by 19F and 13C solid-state NMR spectroscopy. Whereas the 13C NMR spectra are easily interpreted in the context of earlier work on similar host–guest compounds, the 19F NMR spectra of solid 1 are, initially, more difficult to understand. The 19F{1H} NMR spectrum obtained under cross-polarization and magic-angle spinning conditions shows a single isotropic resonance with a significant spinning sideband manifold. The static 19F{1H} CP NMR spectrum consists of a powder pattern dominated by the contributions of the anisotropic chemical shift and the homonuclear dipolar interactions. The 19F MREV-8 experiment, which minimizes the 19F–19F dipolar contribution, helps to identify the chemical shift contribution as an axial lineshape. The full static 19F{1H} CP NMR spectrum is analysed using subspectral analysis and subsequently simulated as a function of the 19F–19F internuclear distance (DFF = 2.25 ± 0.01 Å) of the rapidly rotating CF3 group without including contributions from additional libration motions and the anisotropy in the scalar tensor. The shielding span is found to be 56 ppm. The width of the centerband in the 19F{1H} sample-spinning CP NMR spectrum is very sensitive to the angle between the rotor and the magnetic field. Compound 1 is thus an attractive standard for setting the magic angle for NMR probes containing a fluorine channel with a proton-decoupling facility.  相似文献   

13.
Recent developments in the direct observation of J couplings across hydrogen bonds in proteins and nucleic acids provide additional information for structure and function studies of these molecules by NMR spectroscopy. A JNN-correlated [15N, 1H] TROSY experiment proposed by Pervushin et al. (Proc. Natl. Acad. Sci. USA 95, 14147–14151, 1998) can be applied to measure hJHN in smaller nucleic acids in an E.COSY manner. However, it cannot be effectively applied to large nucleic acids, such as tRNATrp, since one of the peaks corresponding to a fast relaxing component will be too weak to be observed in the spectra of large molecules. In this Communication, we proposed a modified JNN-correlated [15N, 1H] TROSY experiment which enables direct measurement of hJHN in large nucleic acids.  相似文献   

14.
The 1H NMR spectra of the title benzodiazepines derivatives is highly congested because all the protons are in aromatic environment so many proton signals remain overlap even 300 MHz or higher fields. With this in mind, the assignment of the 1H and 13C spectra of these compounds obtained using COSY, NOESY, HMQC and HMBC experiments is reported.  相似文献   

15.
The 1H NMR spectra of the title benzodiazepines derivatives is highly congested because all the protons are in aromatic enviroment so many proton signals remain overlap even 300 MHz or higher fields. With this in mind, the assignment of the 1H and 13C spectra of these compounds obtained using COSY, NOESY, HMQC and HMBC experiments is reported.  相似文献   

16.
Wide-line proton NMR studies on polycrystalline tetramethylammonium tetrachlorozincate have been carried out at high hydrostatic pressures up to 15 kbar in the temperature range 77-300 K and at ambient pressure down to 4.2 K. A second-moment transition is observed to occur starting around 161 K, the temperature for the V-VI phase transition. This transition temperature is seen to have a negative pressure coefficient up to 2 kbar, beyond which it changes sign. At 77 K the second moment decreases to 4 kbar and then increases again as a function of pressure. The results are explained in terms of the dynamics of the N(CH3)4 groups.  相似文献   

17.
Future structural investigations of proteins by solid-state CPMAS NMR will rely on uniformly labeled protein samples showing spectra with an excellent resolution. NMR samples of the solid α-spectrin SH3 domain were generated in four different ways, and their 13C CPMAS spectra were compared. The spectrum of a [u-13C, 15N]-labeled sample generated by precipitation shows very narrow 13C signals and resolved scalar carbon–carbon couplings. Linewidths of 16–19 Hz were found for the three alanine Cβ signals of a selectively labeled [70% 3-13C]alanine-enriched SH3 sample. The signal pattern of the isoleucine, of all prolines, valines, alanines, and serines, and of three of the four threonines were identified in 2D 13C–13C RFDR spectra of the [u-13C,15N]-labeled SH3 sample. A comparison of the 13C chemical shifts of the found signal patterns with the 13C assignment obtained in solution shows an intriguing match.  相似文献   

18.
A two-dimensional {31P} spin-echo-difference constant-time [13C, 1H]-HMQC experiment (2D {31P}-sedct-[13C, 1H]-HMQC) is introduced for measurements of 3JC4′P and 3JH3′P scalar couplings in large 13C-labeled nucleic acids and in DNA–protein complexes. This experiment makes use of the fact that 1H–13C multiple-quantum coherences in macromolecules relax more slowly than the corresponding 13C single-quantum coherences. 3JC4′P and 3JH3′P are related via Karplus-type functions with the phosphodiester torsion angles β and ε, respectively, and their experimental assessment therefore contributes to further improved quality of NMR solution structures. Data are presented for a uniformly 13C, 15N-labeled 14-base-pair DNA duplex, both free in solution and in a 17-kDa protein–DNA complex.  相似文献   

19.
A 19F MR chemical shift imaging (CSI) technique is presented which enables selective imaging of the antineoplastic drug 5-fluorouracil (5-FU) and its major catabolite α-fluoro-β-alanine (FBAL). The CSI sequence employs a chemical shift selective (CHESS) saturation pulse to suppress either the 5-FU or the FBAL resonance before the other component of the two-line 19F MR spectrum is measured. Because the transmitter frequency can always be set to the Larmor frequency of the 19F resonance to be imaged, this approach yields 5-FU and FBAL MR images free of chemical shift artifacts in read-out and slice-selection direction. In phantom experiments, selective 5-FU and FBAL images with a spatial resolution of 15 × 15 × 20 mm3 (4.5 ml) were obtained in 30 min from a model solution, whose drug and catabolite concentrations were similar to those estimated in the liver of tumor patients undergoing IV chemotherapy with 5-FU. The drug-specific MR imaging technique developed is, therefore, well-suited for the direct and noninvasive monitoring of the up-take and trapping of 5-FU in liver tumors in vivo.  相似文献   

20.
The enantiomeric composition and absolute configuration of 4-Amino-3-(benzo[b]furan-2-yl)-Butanoic Acids and of 4-Amino-3-(thien-2-yl)-Butanoic Acids 1 may be accurately determined by 1H and 13C nuclear magnetic resonance analysis of the corresponding derivatives 3 prepared by reaction with chiral reagents. Correlation with HPLC is signaled.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号