共查询到20条相似文献,搜索用时 0 毫秒
1.
The potential energy surface for activation of methane by the third-row transition metal cation, Au+, is studied experimentally by examining the kinetic energy dependence of this reaction using guided ion beam tandem mass spectrometry. A flow tube ion source produces Au+ primarily in its 1S0 (5d10) electronic ground state level but with some 3D (and perhaps higher lying) excited states that can be completely removed by a suitable quenching gas (N2O). Au+ (1S0) reacts with methane by endothermic dehydrogenation to form AuCH2+ as well as C-H bond cleavage to yield AuH+ and AuCH3+. The kinetic energy dependences of the cross sections for these endothermic reactions are analyzed to give 0 K bond dissociation energies (in eV) of D0(Au+ - CH2) = 3.70 +/- 0.07 and D0(Au+ -CH3) = 2.17 +/- 0.24. Ab initio calculations at the B3LYPHW + /6-311++G(3df,3p) level performed here show good agreement with the experimental bond energies and previous theoretical values available. Theory also provides the electronic structures of the product species as well as intermediates and transition states along the reactive potential energy surface. Surprisingly, the dehydrogenation reaction does not appear to involve an oxidative addition mechanism. We also compare this third-row transition metal system with the first-row and second-row congeners, Cu+ and Ag+. Differences in thermochemistry can be explained by the lanthanide contraction and relativistic effects that alter the relative size of the valence s and d orbitals. 相似文献
2.
3.
Esteruelas MA Fernandez-Alvarez FJ Olivan M Oñate E 《Journal of the American Chemical Society》2006,128(14):4596-4597
Complex OsH2Cl2(PiPr3)2 promotes the C-H activation of 2-vinylpyridine and subsequently couples the activated substrate with a second 2-vinylpyridine and two acetylene molecules. In the absence of 2-vinylpyridine, the activated substrate is coupled with an acetylene unit to afford a 2-butadienylpyridine derivative. 相似文献
4.
5.
The reactions of Y (a2D), Zr (a3F), Nb (a6D), Mo (a7S), and electronically excited-state Mo* (a5S) with propyne (methylacetylene) and 2-butyne (1,2-dimethylacetylene) were investigated using crossed molecular beams. For all of the metals studied, reactions with propyne led to H2 elimination, forming MC3H2. For Y + propyne, C-C bond cleavage forming YCCH + CH3 also was observed, with an energetic threshold in good agreement with an earlier determination of D0(Y-CCH). For Y + 2-butyne, three reactive channels were observed: YC4H4 + H2, YC3H3 + CH3, and YC3H2 + CH4. The C-C bond cleavage products accounted for 21 and 27% of the total products at Ecoll = 69 and 116 kJ/mol, respectively. For Zr and Nb reactions with 2-butyne, competition between H2 and CH4 elimination was observed, with C-C bond cleavage accounting for 12 and 4% of the total product signal at Ecoll = 71 kJ/mol, respectively. For reactions of Mo and Mo* with 2-butyne, only H2 elimination was observed. The similarity between reactions involving two isomeric species, propyne and allene, suggests that H atom migration is facile in these systems. 相似文献
6.
Group 4 metal atoms excited in the laser ablation process activate ethane to form the C-H insertion product, the metallacyclopropane dihydride, and vinyl metal trihydride complexes as major products. These three new metal hydrides are characterized by their strong M-H stretching absorptions and other weaker modes as predicted by density functional theory vibrational frequency calculations. 相似文献
7.
The isolable ylide-like N-heterocyclic germylene LGe: (2) {L = CH[(C=CH(2))CMe][N(aryl)](2), aryl = 2,6-(i)Pr(2)C(6)H(3)} shows an unprecedented dual reactivity toward terminal alkynes: its reaction with acetylene leads via [4+2] cycloaddition to the novel intramolecular donor stabilised germylene 3, while conversion of phenylacetylene furnishes the analogous cycloadduct 4 along with a C-H bond activation product, the novel N-donor stabilised alkynyl germylene 5. 相似文献
8.
Oulié P Boulho C Vendier L Coppel Y Etienne M 《Journal of the American Chemical Society》2006,128(50):15962-15963
The intermolecular C-H bond activation of benzene occurs under very mild conditions (room temperature) via a rare stereospecific 1,3-H addition on an unsaturated eta2-cyclopropene intermediate generated by a beta-H abstraction of CH4 from TpMe2NbMe(c-C3H5)(MeCCMe) to give TpMe2NbPh(c-C3H5)(MeCCMe). 相似文献
9.
On treating di(tert-butyl)butadiyne with dimethylaluminum hydride under different reaction conditions two unprecedented organoelement compounds, containing cationic carbon atoms stable in solution at room temperature, were obtained. A vinyl cation (2) in which the cationic carbon atom is part of a C=C double bond was produced from 3 equiv of the hydride, whereas a large excess of the hydride yielded an aliphatic carbocation (3) by complete hydroalumination of all C-C multiple bonds. Each compound is zwitterionic with the hydride counterion effectively coordinated in a chelating manner by two strongly Lewis acidic aluminum atoms. In agreement with quantum-chemical calculations the C-H bond activation and the stabilization of the cationic species are further supported by a strong hyperconjugation with Al-C single bonds. This considerably diminishes the effective positive charge at the respective cationic carbon atoms. 相似文献
10.
Aubert C Gandon V Geny A Heckrodt TJ Malacria M Paredes E Vollhardt KP 《Chemistry (Weinheim an der Bergstrasse, Germany)》2007,13(26):7466-7478
DFT computations have been executed aimed at illuminating the variety of pathways by which pyridones react with alkynes in the presence of [CpCoL(2)]: NH-2-pyridones furnish N-dienylated ligands (N-H activation pathway), N-methyl-2-pyridones are converted into ligated cyclohexadienes ([2+2+2] cocycloaddition pathway), and N-alkynyl-2-pyridones may undergo either [2+2+2] cocycloaddition or C-dienylation (C-H activation), depending on the length of the tether. The calculations predict the formation of the experimentally observed products, including their regio- and stereochemical make up. In addition, the unusual regiochemical outcome of the all-intramolecular [2+2+2] cycloaddition of N,N'-dipentynylpyrazinedione was rationalized by computation, which led to the discovery of a new mechanism. 相似文献
11.
P. E. M. Siegbahn 《Theoretical chemistry accounts》1994,87(4-5):277-292
Summary The C-H activation reaction of acetylene by second row transition metal atoms has been studied including electron correlation of all valence electrons. Binding energies have been computed for both -coordinated complexes and C-H insertion products. It is found that for most atoms the -coordinated complexes are thermodynamically favoured, just as in the case for the corresponding ethylene reaction. The barrier height for the C-H insertion increases from acetylene to ethylene and to methane. This is in line with the experimental finding that there should be an inverse relation between C-H bond strengths and the difficulty to activate these bonds. To explain the detailed differences between the C-H activation of acetylene and ethylene, the interaction with two, rather than one, - and *-orbitals for acetylene is of key importance. The barrier height for the acetylene reaction increases significantly between niobium and molybdenum going to the right in the periodic table, just as for all oxidative addition reactions previously studied. The origin of this increase is that noibium has one empty 4d-orbital but for molybdenum all 4d-orbitals are occupied. Rhodium has the lowest barrier for C-H activation for all systems studied. 相似文献
12.
Thermal motion of CH4+ is investigated by performing an ab initio molecular dynamics method with the second-order M?ller-Plesset (MP2)/6-311G** force field. In the trajectories obtained at 400 K, we have observed rapid interconversion behavior of the geometrical parameters of CH4+ with the frequency of 0.6/ps, where the C-H pair forming the small angle around 55 degrees is switched to another pair on subpicosecond time scale. The switching patterns are found to be classified into the following two types. Type 1: one C-H of the small angled C-H pair is switched to one C-H of the other C-H pair. Type 2: the small angled C-H pair is switched to the other C-H pair, which has been newly observed in the present ab initio MD calculation. The four C-H bonds of CH4+ are characterized by the long and short C-H bonds in a time region of the trajectories, and also for the time-evolution of C-H bonds such interconversion behavior is observed. The switching patterns of the geometrical parameters are compared with those in the interconversion scheme between six equivalent C2v symmetry structures of CH4+ [Paddon-Row, M. N. et al., J Am Chem Soc 1985, 107, 7696]. We have also investigated the electronic energy fluctuation due to thermal motion of CH4+. The standard deviation of total electronic energy at 400 K is evaluated to be 1.2 kcal/mol. 相似文献
13.
Paneque M Poveda ML Santos LL Salazar V Carmona E 《Chemical communications (Cambridge, England)》2004,(16):1838-1839
The in situ generated [Tp(Me2)Ir(C(6)H(5))(2)] fragment induces both aromatic and aliphatic C-H bond activation reactions, along with C-C bond formation, when heated with benzene and 1,2-dimethoxyethane. 相似文献
14.
The unprecedented isoquinolinium zwitterionic salts with an unusual C-4 substitution pattern were efficiently prepared via the multicomponent reaction of in situ formed N-benzylisoquinolinium bromide with aromatic aldehydes and cyclic 1,3-dicarbonyl compounds. 相似文献
15.
Ti^+离子和C2H4分子自旋禁阻反应中C—H键活化机理的理论研究 总被引:1,自引:0,他引:1
用密度泛函B3LYP方法,研究了二重态和四重态势能面自旋禁阻反应Ti^+(^4F,3d^24s^1)+C2H4→TiC2H2^+(^2A2)+H2的微观机理.通过自旋.轨道耦合的计算讨论了势能面交叉点和可能的自旋翻转过程.中间体IM1-^4B2处,四重态和二重态间的旋-轨耦合值为59.3cm^-1.自旋多重度必将发生变化,从四重态系间穿越到二重态势能面形成共价型复合物IM1-^2A1,同时导致四重态势能面的势垒明显降低.到插入中间体IM2后,二重态势能面上有两条不同的反应路径,即分步和协同路径,后者在二重态势能面上得到放热产物TiC2H2^+(^2A2)+H2具有较低的活化势垒,4.52kcal/mol,其主反应路径为:Ti^++C2H4→^4IC→IM1—^4B2→4.2ISC→IM1—^2A1→[^2TSins]→IM2-^2A”→[^2TSMCTS]→IM5→TiC2H2^+(^2A2)+H2. 相似文献
16.
LV LingLing LIU XinWen YUAN Kun WANG XiaoFang & WANG YongCheng College of Life Science Chemistry Tianshui Normal University Tianshui China College of Chemistry Chemical Engineering Northwest Normal University Lanzhou 《中国科学B辑(英文版)》2009,(3)
The mechanism of the spin-forbidden reaction Ti+(4F, 3d24s1) + C2H4 → TiC2H2+ (2A2) + H2 on both doublet and quartet potential energy surfaces has been investigated at the B3LYP level of theory. Crossing points between the potential energy surfaces and the possible spin inversion process are discussed by means of spin-orbit coupling (SOC) calculations. The strength of the SOC between the low-lying quartet state and the doublet state is 59.3 cm-1 in the intermediate complex IM1-4B2. Thus, the changes of its ... 相似文献
17.
[reaction: see text] A tetrahydrobis(benzofuran) mescaline analogue has been prepared in six steps and 38% overall yield from (4'-O-methyl)methyl gallate. The key step in this synthesis is a tandem cyclization reaction via directed C[bond]H activation followed by olefin insertion. 相似文献
18.
Dangel BD Godula K Youn SW Sezen B Sames D 《Journal of the American Chemical Society》2002,124(40):11856-11857
The core of teleocidin B4, a complex fragment of a natural product containing two quaternary stereocenters and a penta-substituted benzene ring, was synthesized in four C-C bond-forming steps starting from tert-butyl derivative 1. The first step involved alkenylation of the tert-butyl group with a vinyl boronic acid, followed by the successful annulation of the cyclohexane ring to the benzene nucleus via an intramolecular Friedel-Crafts reaction. The third step required a diastereoselective oxidative carbonylation of the geminal dimethyl group, followed at last by indole assembly via the alkenylation of the phenol nucleus, to afford the teleocidin B4 core. Noteworthy is the fact that steps 1 and 3 critically depended on the directing role of the aniline nitrogen (directed C-H bond functionalization). 相似文献
19.
《Chemical physics letters》1988,151(6):507-510
A crossed-beam study of the collision-induced dissociation of CH4+ by Ar was carried out at a center-of-mass (c.m.) collision energy of 5.5 eV. The scattering shows three patterns for the formation of CH2+, (1) large-angle scattering at preferred impact parameters with little internal excitation of the products, (2) scattering near the c.m. with nearly all collision energy transferred into products internal energy and (3) superelastic scattering, i.e. conversion of internal energy to translational energy, implying the reaction is initiated by a long-lived excited state of CH4+ generated by electron impact ionization of methane. No previous evidence exists, to our knowledge, that excited states of CH4+ thus generated may have microsecond lifetimes. 相似文献
20.
A guided-ion beam tandem mass spectrometer is used to study the reactions of Pt(+) with methane, PtCH(2)(+) with H(2) and D(2), and collision-induced dissociation of PtCH(4)(+) and PtCH(2)(+) with Xe. These studies experimentally probe the potential energy surface for the activation of methane by Pt(+). For the reaction of Pt(+) with methane, dehydrogenation to form PtCH(2)(+) + H(2) is exothermic, efficient, and the only process observed at low energies. PtH(+), formed in a simple C-H bond cleavage, dominates the product spectrum at high energies. The observation of a PtH(2)(+) product provides evidence that methane activation proceeds via a (H)(2)PtCH(2)(+) intermediate. Modeling of the endothermic reaction cross sections yields the 0 K bond dissociation energies in eV (kJ/mol) of D(0)(Pt(+)-H) = 2.81 +/- 0.05 (271 +/- 5), D(0)(Pt(+)-2H) = 6.00 +/- 0.12 (579 +/- 12), D(0)(Pt(+)-C) = 5.43 +/- 0.05 (524 +/- 5), D(0)(Pt(+)-CH) = 5.56 +/- 0.10 (536 +/- 10), and D(0)(Pt(+)-CH(3)) = 2.67 +/- 0.08 (258 +/- 8). D(0)(Pt(+)-CH(2)) = 4.80 +/- 0.03 eV (463 +/- 3 kJ/mol) is determined by measuring the forward and reverse reaction rates for Pt(+) + CH(4) right harpoon over left harpoon PtCH(2)(+) + H(2) at thermal energy. We find extensive hydrogen scrambling in the reaction of PtCH(2)(+) with D(2). Collision-induced dissociation (CID) of PtCH(4)(+), identified as the H-Pt(+)-CH(3) intermediate, with Xe reveals a bond energy of 1.77 +/- 0.08 eV (171 +/- 8 kJ/mol) relative to Pt(+) + CH(4). The experimental thermochemistry is favorably compared with density functional theory calculations (B3LYP using several basis sets), which also establish the electronic structures of these species and provide insight into the reaction mechanism. Results for the reaction of Pt(+) with methane are compared with those for the analogous palladium system and the differences in reactivity and mechanism are discussed. 相似文献