首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The binuclear complex [Pt2Me2(ppy)2(mu-dppf)], 1, in which ppy = deprotonated 2-phenylpyridyl and dppf = 1,1'-bis(diphenylphosphino)ferrocene, was synthesized by the reaction of [PtMe(SMe2)(ppy)] with 0.5 equiv of dppf at room temperature. In this reaction when 1 equiv of dppf was used, the dppf chelating complex 2, [PtMe(dppf)(ppy-kappa1C)], was obtained. The reaction of Pt(II)-Pt(II) complex 1 with excess MeI gave the Pt(IV)-Pt(IV) complex [Pt2I2Me4(ppy)2(mu-dppf)], 3. When the reaction was performed with 1 equiv of MeI, a mixture containing unreacted complex 1, a mixed-valence Pt(II)-Pt(IV) complex [PtMe(ppy)(mu-dppf)PtIMe2(ppy)], 4, and complex 3 was obtained. In a comparative study, the reaction of [PtMe(SMe2)(ppy)] with 1 equiv of monodentate phosphine PPh3 gave [PtMe(ppy)(PPh3)], A. MeI was reacted with A to give the platinum(IV) complex [PtMe2I(ppy)(PPh3)], C. All the complexes were fully characterized using multinuclear (1H, 31P, 13C, and 195Pt) NMR spectroscopy, and complex 2 was further identified by single crystal X-ray structure determination. The reaction of binuclear Pt(II)-Pt(II) complex 1 with excess MeI was monitored by low temperature 31P NMR spectroscopy and further by 1H NMR spectroscopy, and the kinetics of the reaction was studied by UV-vis spectroscopy. On the basis of the data, a mechanism has been suggested for the reaction which overall involved stepwise oxidative addition of MeI to the two Pt(II) centers. In this suggested mechanism, the reaction proceeded through a number of Pt(II)-Pt(IV) and Pt(IV)-Pt(IV) intermediates. Although MeI in each step was trans oxidatively added to one of the Pt(II) centers, further trans to cis isomerizations of Me and I groups were also identified. A comparative kinetic study of the reaction of monomeric platinum(II) complex A with MeI was also performed. The rate of reaction of MeI with complex 1 was some 3.5 times faster than that with complex A, indicating that dppf in the complex 1, as compared with PPh 3 in the complex A, has significantly enhanced the electron richness of the platinum centers.  相似文献   

2.
Reactions of the cationic complex ions [PtMe(Me2SO)(PP)]+ (PP = dppf (1,1'-bis(diphenylphosphino)ferrocene) and dppe (1,2-bis(diphenylphosphino)ethane)) with 5,10,15,20-tetrakis(4-pyridyl)-21H,23H-porphyrin (TpyP) led to the formation of the symmetrical tetraplatinated porphyrin complexes, [PtMe(PP)]4TpyP.X4 (PP = dppf, X = CF3SO3-, 3, and PP = dppe, X = BF4-, 5) containing the organometallic fragment [PtMe(PP)]. The precursor sulfoxide platinum complexes [PtMe(Me2SO)(dppf)]CF3SO3, 2 and [PtMe(Me2SO)(dppe)]BF4, 4, were prepared by halide abstraction from [PtMeCl(dppf)], 1, and by controlled protonolysis of [PtMe2(dppe)] respectively, in the presence of a small amount of dimethyl sulfoxide. All these starting platinum(II) compounds, as well as the porphyrin derivatives 3 and 5, were fully characterized through elemental analysis, 1H NMR mono- and bidimensional, 31P[1H], 31P-1H HMBC, UV/Vis absorption and photophysical measurements. The X-ray crystal structure of complex 1 has been determined. In order to ascertain the electronic influence of ferrocene, the spectroscopic and redox properties of 3 were compared with those of TPyP and of the analogous 5. Cyclic voltammetry (CV), differential pulse voltammetry (DPV), 1H and 31P NMR data, and UV/Vis data, all suggest a certain degree of communication between the central porphyrin and the peripheral hetero-bimetallic fragments. In contrast, no detectable interaction among these peripheral groups seem to come into play. Unlikely from the porphyrin derivative 5, formation of well defined fluorescent mesoscopic ring structures was easily achieved by simple evaporation from diluted dichloromethane solutions of 3.  相似文献   

3.
Cyclometalated platinum(II) complex [Pt(C^N)Cl(dmso)], 1, in which C^N = N(1),C(2′)-chelated deprotonated 2-phenylpyridine and dmso = dimethylsulfoxide, was reacted with 1 equiv of 1,1′-bis(diphenylphosphino)ferrocene, dppf, to give the cyclometalated diplatinum(II) complex [Pt2(C^N)2Cl2(μ-dppf)], 2, along with 0.5 equiv of unreacted dppf. However, the related reaction with 0.5 equiv of dppf produced complex 2 in pure form. Complex 2 in solution was fully characterized by using multinuclear NMR spectroscopy (1H, 13C, 31P, and 195Pt) and a number of 2D NMR experiments. The structure of complex 2 in solid state was determined by X-ray crystallography showing that the bridging dppf ligand is arranged close to “antiperiplanar staggered” conformation. Cytotoxicity of the complex 2 was studied in three human cancer cell lines derived from ovarian carcinoma(CH1), lung carcinoma(A549), and colon carcinoma (SW480) by means of the MTT assay (MTT = 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide).  相似文献   

4.
5.
Claisen condensation of 1,3-bis(methoxycarbonylmethoxy)benzene with acetone and acetophenone afforded new chelating ligands consisting of two β-diketonate fragments, viz., 1,3-bis(acetylacetonyloxy)benzene and 1,3-bis(benzoylacetonyloxy)benzene, which are linked to each other through the resorcinol spacer. In the crystal, 1,3-bis(acetylacetonyloxy)benzene, unlike the starting ester, adopts a planar conformation and exists in the enol form. The acidities of these compounds and their complexation with lanthanide ions in aqueous ethanolic solutions were studied by pH-potentiometry. Depending on the concentration conditions and pH, the La3+, Gd3+, and Lu3+ ions form 1 : 1, 1 : 2, or 1 : 3 complexes with bis(β-diketones). The stability of the complexes increases as the atomic number of the lanthanide increases (La3+ < Gd3+ ≤ Lu3+). The complexation constants and selectivity of complexation substantially increase with increasing degree of deprotonation of the ligands, which indicates that both chelate groups of the ligands are simultaneously involved in coordination. The Ph substituents in bis(β-diketone) have a considerable effect on the composition and stability of complexes with lanthanide ions due to additional noncovalent inner-sphere interactions.__________Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 614–622, March, 2005.  相似文献   

6.
7.
A convenient approach for the preparation of (4R,5R)-4,5-bis(aminomethyl)-2-isopropyl-1,3-dioxolane is described. The target compound via two steps is synthesized from diethyl-2,3-O-isobutylidene-D-tartrate, through ammonolysis and reduction.  相似文献   

8.
Conclusions 1,2-Bis(B-amino-o-carboranyl)ethane and 1,4-bis(B-amino-o-carboranyl)benzene were synthesized.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 7, pp. 1669–1670, July, 1976.  相似文献   

9.
Reduction of Co(dppf)Cl2 with 2 equiv of sodium naphthalenide in THF, in the presence of dppf, affords the homoleptic complex Co(dppf)2, 1, isolated in 65% yield as a brick red solid, extremely air sensitive. In solution, under inert atmosphere, 1 slowly decomposes into Co and dppf, following a first-order kinetic law (t1/2 = 21 h at 22 degrees C). Similarly to the Rh and Ir congeners, 1 undergoes a one-electron reversible reduction to [Co(dppf)2]-. Attempts to obtain this d10 species by chemical as well as electrochemical reduction of 1 lead to the hydride HCo(dppf)2, 2, as the only product that can be isolated. Reduction of Ni(dppf)Cl2 with sodium in the presence of dppf and catalytic amounts of naphthalene affords Ni(dppf)2, 3, isolated in 60% yield as a yellow air stable solid. The stoichiometric oxidation of 3 with [FeCp2]PF6 forms the d9 complex [Ni(dppf)2]PF6, 4, which represents the second example of a structurally characterized Ni(I) complex stabilized by phosphines. A single-crystal X-ray analysis shows for the metal a distorted tetrahedral environment with a dihedral angle defined by the planes containing the atoms P(1), Ni, P(2) and P(3), Ni, P(4) of 78.2 degrees and remarkably long Ni-P bond distances (2.342(3)-2.394(3) A). The EPR spectroscopic properties of 1 (at 106 K in THF) and 4 (at 7 K in 2-methyl-THF) have been examined and g tensor values measured (1, gx = 2.008, gy = 2.182, gz = 2.326; 4, gx = 2.098, gy = 2.113, gz = 2.332). A linear dependence between the hyperfine constants and the Ni-P bond distances has been evidenced. Finally, the change with time of the EPR spectrum of 4 indicates that it very slowly releases dppf.  相似文献   

10.
11.
12.
13.
24元大环双核铜配合物的合成及对超氧化歧化酶的模拟   总被引:10,自引:0,他引:10  
陆勤  罗勤慧  梅光泉  沈孟长  孙琼丽 《化学学报》1993,51(11):1082-1087
合成了三个24元大环双铜(II)配合物作为SOD模拟物, 配体由2, 6-二乙酰基吡啶与3-氧杂戊烷1, 5-二胺缩合而成, 以SCN^-, N~3^-, im^-桥联, 其中前面两个桥联双铜(II)配合物是新配合物。用多种物理方法进行了表征, 并用EPR和电子光谱研究了桥基为im^-的配合物与N~3^-, SCN^-, F^-和Br^-的键合。其中N~3^-发生轴向配位, SCN^-使im^-断裂, 与SOD的键合作用类似, F^-, Br^对模拟物无明显作用。  相似文献   

14.
The metal complexes of Co(II), Cu(II), Ni(II), and Zn(II) with novel quadridentate Schiff base derived from 1,4-bis(4-chloro-2-aminophenoxy)butane and salicylaldehyde have been synthesized in DMF. These complexes have been characterized by microanalytical data, elemental analysis, magnetic measurements. 1H NMR, 13C NMR, UV-vis and IR-spectra as well as conductance measurements were used to confirm the structures. On the basis of these observations it is suggested that these complexes exhibit the coordination number four. The text was submitted by the authors in English.  相似文献   

15.
《Polyhedron》2003,22(25-26):3389-3393
Cu(I) complexes with 1,3-bis(diphenylphosphino)propane (dppp), 1,2-bis(diphenylphosphino)benzene (dppB) and perfluorinated carboxylates of the general formula [Cu(diphosphine)2](RCOO), R=C2F5, C4F9, C6F13, C8F17, C9F19, have been prepared and characterized with MS, IR and 1H, 31P, 13C, 19F, 63Cu NMR spectroscopy. The presence of distinct bis-chelated cations of [Cu(diphosphine)2]+ type and uncoordinated carboxylate anions has been proposed.  相似文献   

16.
17.
18.
1,1'-Diacetoacetylferrocene 1 reacted with phenylene-1,3-dioxyactyl hydrazine 2 in absolute ethanol to give the macrocyclic ferrocenyl dipyrazole compound in moderate yield. Determined by X-ray structure analysis, it crystallizes in monoclinic system, space group P21/c with a = 13.7509(4), b = 8.1277(2), c = 21.7472(6) A, β = 103.1030(10)°, V = 2367.25(11) A^3, Z = 4, Dc = 1.505 g/cm^3, R = 0.0353 and wR = 0.0811. The electrochemical studies reveal that redox of Fe^+/Fe in ferrocene is a reversible one-electron process.  相似文献   

19.
This article describes the synthesis and the cation-radical polymerization (Scholl reaction) of 1,3-bis[4-(1-naphthoxy) benzoyl] benzene ( 6 ) and 1,4-bis[4-(1-naphthoxy) benzoyl]- benzene ( 7 ) initiated by FeCI3. This polymerization produced poly(ether ether ketone ketone)s (PEEKK) of number average molecular weight (M?n) up to 5400 g/mol. The synthesis of bis[4-(1-naphthoxy) phenyl] methane ( 8 ), 1,3-bis[4-(1-napthoxy) phenylmethyl] benzene ( 9 ), and 1,4-bis[4-(1-naphthoxy) phenylmethyl] benzene ( 10 ) are also described. Polyethers of M?n up to 15400 g/mol at a FeCl3/monomer molar ratio of 2/1 were obtained. An increased polymerizability of the monomers 9 and 10 containing two CH2 groups versus that of the corresponding monomers containing two carbonyl groups ( 6 and 7 ) was observed. This enhanced polymerizability was explained based on the increased nucleophilicity of monomers 9 and 10 .  相似文献   

20.
A novel selective route to 1,1-bis(silyl)-1-alkenes has been developed. Sequential one-pot silylative coupling exo-cyclization of 1,2-bis(dimethylvinylsiloxy)ethane followed by the reaction with Grignard reagents leads to the desired 1,1-bis(silyl)ethenes, which are then efficiently coupled in the presence of silver nitrate and palladium acetate with aryl or alkenyl idodides to give the corresponding 1,1-bis(silyl)-2-arylethenes or 1,1,4-trisubstituted 1,3-butadienes with high yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号